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Preface to the second edition

We are very happy at the enthusiastic response from students and teach-
ers to Problem Primer for the Olvmpiad. After six years and several
reprints we felt it was time to revise and include more problems. We
have added more problems in each topic and have enlarged the section
containing practice problems. We have corrected several misprints / er-
rors which were brought to our notice by diligent readers to whom we
are grateful. Another major change in this edition is that we have re-
drawn all the figures using the graphics package GPL developed by A.
Kumaraswamy of the Rishi Valley School. We thank him for allowing
us to make use of this package. We would be grateful if any errors and
inaccuracies that may still remain are brought to our notice.

December 2000 C R Pranesachar
B J Venkatachala
C S Yogananda



Preface

Mathematical problems are integral to any culture as much as music or
other forms of art. Here is a charming example from Bhaskaracharya’s
Lilavati (Circa 1140 A.D.):

A peacock perched on the top of a nine foot high pillar sees
a snake, three times as distant from the pillar as the height
of the pillar, sliding towards its hole at the bottom of the
pillar. The peacock immediately flies to grab the snake. If
the speeds of the peacock’s flight and the snake’s slide are
equal, at what distance from the pillar will the peacock grab
the snake?

The “three famous problems of antiquity” (namely the trisection of an
angle, the doubling of the cube and the squaring of a circle, using only
straight edge and compasses) from the Greek civilisation, the Temple
Geometry problems of more recent origin(17th and 18th centuries) from
Japan are other examples that come to mind. Problems as puzzles are
found in the oldest written records.

However, use of problems as a means of searching for talent at
school level is one of recent origin, probably beginning with the Eotvos
competitions in Hungary which started in 1894. Though Mathematical
contests / Olympiads have been a regular annual feature in many places
in India (for instance, Andhra Pradesh, Bihar, Gujarat, Karmnataka) for
many years now, they received fresh impetus in 1986 when the National
Board for Higher Mathematics (NBHM) organised the first Indian Na-
tional Mathematical Olympiad (INMO). One of the main purposes of



the INMO was to gauge the level of the available talent to see if India
could send a team to International Mathematical Olympiad (IMO). The
IMO, which began in 1959 is an annual event and is becoming more
and more popular everywhere. The results of the INMO were very en-
couraging and India has been regular participant in the IMO since 1989.
Participation in the INMO is by invitation. The top 30 or 40 students at
the Regiona! Mathematical Olympiads (RMO) which are held in van-
ous regions are invited to participate in the INMO. The RMOs are open
to students of Class 11 and below. Both INMO and RMO are written
examinations consisting of 6 -10 problems. The problems are of a very
different nature from the problems students usually encounter in their
school curmculum. These problems are designed to challenge the stu-
dents and bring the best in them to the fore. Moreover, the intensive
preoccupation with interesting problems of simple and elementary na-
ture and the effort of finding complete and elegant solutions give the
students new experience, the taste of creative intellectual adventure. It
is the very fond hope of all associated with the Olympiad activity that
this will induce them to take up Mathematics as a career.

A major obstacle to students preparing to take part in the Olympiad
is the scarcity of ‘Problem literature’. This motivated us, as a first step,
to compile problems that have appeared in the previous RMOs and IN-
MOs along with detailed solutions. Our future projects in this direction
include ‘Problem Newsletter’ and more problem compilations. A list of
all the regional co-ordinators is given at the end of the book. You could
approach them for information regarding the RMOs in your region.

Though we have made every eftfort to make the book free of errors-
printing or mathematical - we might not have succeeded completely.
We would be grateful to the readers who would bring to our notice any
inaccuracies which may still remain.



To the student readers

The best way to use this book is, of course, to look up the problems and
solve them! If you cannot get started then look up the section *Tool Kit’
which is a collection of theorems and results which are generally not
available in school textbooks but which are extremely useful in solving
problems. As in any other trade, you will have to familiarize yourself
with the tools and understand them to be able to use them effectively.
We strongly recommend that that you try to devise your own proofs for
these results or look these up in books. (A list of reference books is
given at the end.) You should look up the solution only after you have
tried the problem on your own for some time. And the story does not end
with the complete solution of a problem - you look for other solutions,
generalisations, interconnections between various problems, .... One
of our experiences is a perfect case in point. The problems 51 and 65
in this book appeared in the INMO 92. Our first solutions to both these
problems used simple, straight-forward trigonometry. Later, it turned
out that there were elegant ‘pure geometry’ solutions to both, and in fact
the two problems were related! We leave it as a challenge to you to use
Problem 51 to get another ‘pure geometry’ solution to problem 65. With
this challenge we leave you to start on your voyage of discovery! May
you come up with many gems and when you do, be sure to let us know.

vil
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“And a final observation. We should not forget that the so-
lution of any worth-while problem very rarely comes to us
easily and without hard work; it is rather the result of intel-
lectual effort of days or weeks or months. Why should the
young mind be willing to make this supreme effort? The ex-
planation is probably the instinctive preference for certain
values, that is, the attitude which rates intellectual effort and
spiritual achievement higher than material advantage. Such
a valuation can only be the result of long cultural devel-
opment of environment and public spirit which is difficult
to accelerate by the governmental aid or even by more in-
tensive training in mathematics. The most effective means
may consist of transmitting to the young mind the beauty of
intellectual work and the feeling of satisfaction following a
great and successful mental eftort .”

Gabor Szego



List of symbols

alb a divides b.
(a,b) greatest common divisor
[x] integer part of x, i.e., the greatest integer

less than or equal to x.
n! (read as ‘n factorial’)=1-2-3---(n-1)-n.

(") or "C, the binomial coefhcient; the number of

combinations of n things taken r at a time
n!

ri(n-r)"

Zai the suma) +a> +--- + a,.

n
l_l a; the product aja; - - - a,.
i=1

|A| cardinality of a set A,
1.e., the number of elements in A.

[ABC]) area of triangle ABC.

fog composite of the functions f and g;
Seg(x) = f(g(x)).



Chapter 1

Problems

1.1

1.

Number Theory

Find the least number whose last digit is 7 and which becomes 5
times larger when this last digit is carned to the beginning of the
number.

All the 2-digit numbers from 19 to 93 are written consecutively
to form the number N = 19202122...919293. Find the largest
power of 3 that divides N.

. If x,y,zand n > 1 are natural numbers with x" + y' = 7" then

show that x, y and z are all greater than n.

Given two relatively prime integers m and n, both greater than 1,
show that
log

log o n

is not a rational number.

If a, b, x and v are integers greater than 1 such that a and b have
no common factors except | and x* = y”, show that x = n® and

y = n“ for some integer n greater than 1.
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10.

11.

12.

13.

14.

15.

CHAPTER 1. PROBLEMS

. Determine all pairs (m, n) of positive integers for which 2" + 3" is

a square.

Prove that n* + 4" is not a prime number for any integer n > 1.

Find all four - digit numbers having the following properties:
1. 1t is a square,

ii. its first two digits are equal to each other and

iii. its last two digits are equal to each other.

If a, b, c are any three integers then show that

abe(@® - BB - ) - )

is divisible by 7.
Determine the largest 3 - digit prime factor of the integer (,000).,
If

11 1

- + P J—

a b ¢

where a, b, ¢ are positive integers with no common factor, prove
that (a + b) is a square.

Show that there is a natural number n such that n! when written
decimal notation ( that is, in base 10 ) ends exactly in 1993 zeroes.

Find the remainder when 2'%% is divided by 1990.

Determine all non-negative integral pairs (x, y) for which
(xy -7 =22+~
Determine with proof, all the positive integers n for which

1. nis not the square of any integer and
ii. [ vn)? divides n.
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16.

17.

18.

19.

20.

21.

22.

([x] denotes the largest integer that is less than or equal to x.)

Prove that the product of 4 consecutive natural numbers cannot be
a cube.

i. Determine the set of positive integers n for which 3"*! di-
vides 2" + 1.
ii. Prove that 3"*2 does not divide 2¥" +1 for any positive integer

n.

For any positive integer n, let s(n) denote the number of ordered
pairs (x, y) of positive integers for which

11 1

—_—t - = -
X y n
For instance, s(2) = 3. Find the set of positive integers n for
which s(n) = 5.

For a positive integer n, define A(n) to be

(2n)!
(n!)?’

Determine the sets of positive integers n for which:

i A(n) is an even number;

ii A(n) is a multiple of 4.

Show that there are infinitely many positive integers A such that
2A is a square, 3A is a cube and 5A is a fifth power.

Find all prime numbers p for which there are integers x, y satisfy-

Ing
p+1=2xand p* + 1 = 2%

Find all triples (a, b, ¢) of positive integers such that

R



23.

24.

1.2

26.

27.

29.

30.

31

CHAPTER |I. PROBLEMS

Given any positive integer n show that there are two positive ra-
tional numbers a and b, a # b, which are not integers and which
are such that a — b, a®> - b%, a® - b, ..., a" - b" are all integers.

Find all primes p tor which the quotient (27~! — 1)/p is a square.

. Solve for integers x, y, z:

x+y=1-g2 x3+y3=l—zz.

Algebra

Determine the largest number in the infinite sequence 1, V2, V3,

If a, b and c are odd integers, prove that the roots of the quadratic
equation ax’ + bx + ¢ = 0 cannot be rational numbers.

If a and b are positive real numbers such that a+ b = 1, prove that

a+l 2+ b+l 2>25
a b] — 2°
Show that there do not exist any distinct natural numbers a, b, ¢

and d such that

a+b=+d? and a+b=c+d

If ag,ay,...... aso are the coethcients of the polynomial
(1 + x+ xz)‘.’s,
prove that the sum ag + a2 + ... + aso 1s even.
Prove that the polynomial
f(x) = x* +26x° + 52x% + 78x + 1989

cannot be expressed as product f(x) = p(x)g(x) where p(x), g(x)
are both polynomials with integral coefficients and with degree
not more than 3.



1.2

32.

33.

34.

35.

36.

37.

38.

ALGEBRA 5

If a,b,c and d are any four real numbers, not all equal to zero,
prove that the roots of the equation x® + ax® + bx* +d = 0 cannot
all be real.

Given that the equation x* + px® + gx*> + rx + s = 0 has four real
positive roots, prove that

(1) pr-16s=0,

(i) g% - 365> 0,

where equality holds, in each case, if and only if the four roots are
equal.

Let a, b, c be real numbers with0 < a < 1,0<b<1,0<c< 1
and a + b + ¢ = 2. Prove that

a b c

. . >
l-a 1-b 1—6_8

Prove that

I<l+l+|+---+l
1001 1002 1003 3001

<

Wl

If x, y and z are three real numbers such that
xX+y+z=4 and x2+y2+zz=6,

then show that each of x, v, z lie in the closed interval [(2/3), 2].
Can x attain the extreme values 2/3 and 2?

Let f(x) be a polynomial with integer coefficients. Suppose for
five distinct integers a),a»,a3,aq and as one has f(a,) = 2 for
1 <i<5. Show that there is no integer b such that f(b) = 9.

Determine all functions f : R\ {0, 1} — R (here R denotes the set
of real numbers) satisfying the functional relation

21 =2
f(X)+f( ! )= 2 ..x)’ forx #0and x # 1.
l -x (1l -x)




39.

40.

41.

42.

43.

44.

45.

CHAPTER 1. PROBLEMS

Let p(¥) = x> + ax + b be a quadratic polynomial in which a and
b are integers. Given any integer n, show that there is an integer
M such that p(n)p(n + 1) = p(M).

If a|,as,...,a, are n distinct odd natural numbers not divisible
by any prime greater than 5, show that

1 1 1 1

—+—+—+ -+ =<2

a a aj an
If p(x) is a polynomial with integer coefficients and a, b, ¢ are
three distinct integers, then show that it is impossible to have
p(a) = b, p(b) = c and p(c) = a.

Let a, b, ¢ denote the sides of a triangle, show that the quantity

a b . c
+
b+c c+a a+b

lies between the limits 3/2 and 2. Can equality hold at either
limit?

Let f be a function defined on the set of non-negative integers and
taking values in the same set. Suppose we are given that

f(x)

) for all non-negative integers

i x- f(x) I9[ ] 90
ii. 1900 < £(1900) < 2000.

Find all the possible values of f(1900). (Here [z] denotes
the largest integer < z; e.g., [3.145] = 3.)

For positive real numbers a, b, c,d satisfyinga+b+c+d < 1
prove the following inequality:

< ! .
~ 64abced

SIS
2T IR~

+ -+

SIS
aln

Find all cubic polynomials p(x) such that (x — 1)* is a factor of
p(x) + 2and (x + 1) is a factor of pla) = 2.
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46.

47.

48.

49.

50.

1.3

51.

52.

Solve for real x:
L]
(x]  [2x] 3’

where [x] is the greatest integer less than or equal to x and {x} =
x = [x]. [e.g., [3-4]=3 and {3.4}=0.4].
If p, g, r are the roots of the cubic equation
3 -3p +3¢x-r=0

show that p=g=r.
Define a sequence (a,),>) by

a=1,a=2 and a,42=2a,4 —a,+2,n21.
Prove that for any m, a,,a,,+) is also a term in the sequence.

Suppose a and b are two positive real numbers such that the roots
of the cubic equation x> — ax + b = 0 are all real. If @ is a root of
this cubic with minimal absolute value prove that

b ca< 3b
a T 2a

Let a, b, ¢ be three real numbers suchthat 1 > a > b > ¢ 2 0.
Prove that if A is a root of the cubic equation x> + ax®> + bx+c =0
(real or complex), then |4] < 1.

Geometry

In a triangle ABC, (A is twice ZB. Show that a*> = b(b + c). (In
fact, the converse is also true. Prove it.)

Two circles C) and C; intersect at two distinct points P and Q ina
plane. Let a line passing through P meet the circles C; and (5 in
A and B respectively. Let Y be the midpoint of AB and QY meet
the circles C, and C; in X and Z respectively. Show that Y is also
the midpoint of XZ.
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54.

55.

56.

57.

38.

59.

60.

CHAPTER 1. PROBLEMS

Suppose ABCD is a cyclic quadrilateral and the diagonals AC and
BD intérsect at P. Let O be the circumcentre of triangle APB
and H the orthocentre of triangle CPD. Show that O, P, H, are
collinear.

Given a triangle ABC in a plane X find the set of all points P lying
in the plane X such that the circumcircles of triangles ABP, BCP
and CAP are congruent.

Suppose ABCD is a cyclic quadrilateral and x,y,z are the dis-
tances of A from the lines BD, BC, BD respectively. Prove the

BD _BC  CD
x y z

Suppose ABCD is a convex quadrilateral and P, Q are the mid-
points of CD,AB. Let AP, DQ meet in X and BP,CQ meetin Y.
Prove that [ADX] + [BCY] = [PXQY]. How does the conclusion
alter if ABCD is not a convex quadrilateral?

Suppose P is an interior point of a tnangle ABC and AP, BP, CP
meet the opposite sides BC,CA,AB in D, E, F respectively. Show
that

AF AE AP

FB' EC  PD

Two circles with radii ¢ and b touch each other externally. Let ¢
be the radius of the circle that touches these two circles externally
as well as a common tangent to the two circles. Prove that

| ] |
Ve va Vb

Construct a triangle ABC given h,,, hp, the altitudes from A and B
and m,, the median through A.

Given the angle OBP and a point L outside the angle QBP, draw
a straight line through L meeting BQ in A and BP in C such that
the triangle ABC has a given perimeter.
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61.

62.

63.

64.

65.

66.

67.

Triangle ABC has incentre / and the incircle touches BC, CA at
D, E respectively. If Bl meets DE in G, show that AG is perpen-
dicular to BG.

Let A be one of the two points of intersection of two circles with
centres X and Y. The tangents at A to these two circles meet the
circles again at B, C. Let the point P be located so that PXAY is a
parallelogram. Show that P is the circumcentre of triangle ABC.

A trniangle ABC has incentre /. Points X,Y are located on the
line segments AB,AC respectively so that BX - AB = [B? and
CY - AC = IC?. Given that X, 1, Y are collinear, find the possible
values of the measure of angle A.

A tnangle ABC has incentre /. Its incircle touches the side BC at
T. The line through T parallel to /A meets the incircle at S and
the tangent to the incircle at S meets sides AB, AC in points C’, B
respectively. Prove that triangle AB’C” is similar to triangle ABC.

Suppose AjA2A3 ... A, is an n-sided regular polygon such that

| 1 1
= +
A1A2 AlA3 AlAy

Determine n, the number of sides of the polygon.

Suppose ABCD is a quadrilateral such that a semicircle with its
centre at the midpoint of AB and bounding diameter lying on AB
touches the other three sides BC, CD and DA. Show that

AB? = 4BC - AD.

Let ABC be an acute-angled triangle. For any point P lying within
this triangle, let D, E, F denote the feet of the perpendiculars from
P onto the sides of BC, CA, AB respectively. Determine the set of
all possible positions of the point P for which the triangle DEF is
isosceles. For which positions of P will the triangle DEF become
equilateral.
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68.

69.

70.

71.

72.

73.

74.

75.

CHAPTER |. PROBLEMS

Three congruent circles have a common point O and lie inside a
triangle such that each circle touches a pair of sides of the triangle.
Prove that the incentre and the circumcentre of the triangle and the
point O are collinear.

Let ABC be a triangle with ZA = 90°, and S be its circumcircle.
Let S| be the circle touching the rays AB,AC and the circle S
internally. Further let S, be the circle touching the rays AB,AC
and the circle S externally. If ry, r; be the radii of the circles S
and S, respectively, show that ryr; = 4[ABC].

The diagonals AC and BD of a cyclic quadrilateral ABCD meet at
right angles in E. Prove that

EA’> + EB* + EC* + ED? = 4R,
where R is the radius of the circumscribing circle.

Suppose ABCD is a rectangle and P,Q,R,S are points on the
sides AB, BC, CD, DA respectively. Show that

PO+OR+RS +SP> V2AC

Let P be an interior point of an equilateral tnangle ABC such that
AP? = BP? + CP>. Prove that ZBPC = 150°.

Let ABC be a triangle and A, be the altitude through A. Prove that
(b+¢) 2d*+ 4h‘2,.
(As usual a, b, c denote the sides BC, CA, AB respectively.)

Let P be an interior point of a triangle ABC and let BP and CP
meet AC and AB in E and F respectively. If [BPF] = 4,[BPC] =
8 and [CPE] = 13, find [AFPE]. (Here [ ] denotes the area of a
triangle or a quadnlateral as the case may be.)

Suppose ABCD is a cyclic quadrilateral inscribed in a circle of
radius one unit. If

AB-BC-CD - DA = 4,
prove that ABCD is a square.
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14

76

7.

78.

79.

80.

81.

Combinatorics

Consider the collection of all three-element subsets drawn from
the set {1,2,3,4,...,299,300}. Determine the number of these
subsets for which the sum of the three elements is a multiple of 3.

How many 3-element subsets of the set {1,2,3,...,19,20} are
there such that the product of the three numbers in the subset is
divisible by 4?

Suppose Ay, A, ..., A¢ are six sets each with four elements and
B,, B, , ..., B, are n sets each two elements such that

AjUAVU...UA¢ =B UBU...UB, =S (say).

Given that each element of S belongs to exactly four of the A;’s
and exactly three of the B;’s, find n.

Two boxes contain between them 65 balls of several different
sizes. Each ball is white, black, red, or yellow. If you take any
five balls of the same colour, at least two of them will always be
of the same size (radius). Prove that there are at least three balls
which lie in the same box, have the same colour and are of the
same size.

There are two ums each containing an arbitrary number of balls.
Both are non empty to begin with. We are allowed two types of
operations:

a. Remove an equal number of balls simultaneously from both
urns;

b. Double the number of balls in any one them.

Show that after performing these operations finitely many times,
both the umns can be made empty.

Let A denote a subset of the set {1, 11,21,31,...541,551} having
the property that no two elements of A add upto 552. Prove that
A cannot have more than 28 elements.



82

83.

84.

85.

86.

87.

88.

89.

CHAPTER |. PROBLEMS

Let A ={1,2,3,...100} and B a subset of A having 48 elements.
Show that B has two distinct elements x and y whose sum is di-
visible by 11.

Find the number of permutations, (P, P2, ..., Pe), of (1,2,...,6)
such that for any k,1 < k < 5, (Py, Pa,..., P) does not form a
permutation of 1,2, ... k.

[That is, Py # 1;(P,, P>) is not a permutation of 1,2, 3, etc.]

There are seventeen distinct positive integers such that none of
them has a prime factor exceeding 10. Show that the product of
some two of them is a square.

Let A be a subset of {1,2,3,...,2n - 1,2n} containing n + 1 ele-
ments. Show that

a. Some two elements of A are relatively prime:

b. Some two elements of A have the property that one divides
the other.

Given seven arbitrary distinct real numbers, show that there exist
two numbers x and y such that

R l

< .
1 + xy V3

There are six cities in"an island and cvery two of them are con-
nected either by train or by bus, but not by both. Show that there
are three cities which are mutually connected by the same mode
of transport.

0<

There are eight points in the plane such that no three of them are
collinear. Find the maximum number of triangles formed out of
these points such that no two triangles have more than one vertex
in common.

How many increasing 3-term geometric progressions can be ob-
tained from the sequence 1,2,2%,2%, ... 2"7
(e.g., (22,2°,28} is a 3-term geometric progression for n > 8.)



1.4. COMBINATORICS 13

90.

91.

92.

93.

9.

95.

96.

97.

Let A denote the set of all numbers between 1 and 700 which are
divisible by 3 and let B denote the set of all numbers between |
and 300 which are divisible by 7. Find the number of all ordered
pairs (a,b) suchthata € A,b € B,a+# band a + b is even.

IfAc{l,2,3,...,100}, |A| = 50 such that no two numbers from
A have their sum as 100 show that A contains a square.

Find the number of unordered pairs {A, B} (1.e., the pairs {A, B}
and {B, A} are considered to be the same) of subsets of an n-
element set X which satisfy the conditions:

(@ A#B,;
(b) AUB=X.

Find the minimum possible least common multiple (l.c.m.) of

twenty (not necessarily distinct) natural numbers whose sum is
801.

Find the number of quadratic polynomials, ax> + bx + ¢, which
satisfy the following conditions:

(a) a, b, c are distinct;
(b) a,b,ce{l1,2,3,...,1999} and

(c) x+ 1 divides ax? + bx + c.

Show that the number of 3-element subsets {a, b, c} of the set
{1,2,3,...,63} witha + b + ¢ < 95 is less than the number of
those witha + b + ¢ > 95.

Let X be a set containing n elements. Find the number of all
ordered triples (A, B, C) of subsets of X such that A is a subset of
B and B is a proper subset of C.

Find the number of 4 X 4 arrays whose entries are from the set
{0, 1, 2, 3} and which are such that the sum of the numbers in each
of the four rows and in each of the four columns is divisible by 4.
(An m x n array is an arrangement of mn numbers in m rows and
n columns.)
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98.

99.

100.

1.5

101.

102.

103.

CHAPTER |I. PROBLEMS

There is a 2n X 2n array (matrix) consisting of 0’s and 1’s and
there are exactly 3n zeros. Show that it is possible to remove all
the zeros by deleting some n rows and some n columns.

For which positive integral values of n can the set {1,2,3, ..., 4n}
be split into n disjoint 4-element subsets {a, b, c,d} such that in
each of these sets a = (b + ¢ + d)/3.

For any natural number n, (n > 3), let f(n) denote the number
of non-congruent integer-sided tnangles with perimeter n (e.g.,
fB3)=1,f@4) =0, f(7) = 2). Show that

@) £(1999) > £(1996); (b) f(2000) = f(1997).

Miscellaneous

The sixty-four squares of a chess board are filled with positive
integers one on each in such a way that each integer is the average
of the integers on the neighbouring squares. (Two squares are
neighbours if they share a common edge or vertex. Thus a square
can have 8, 5 or 3 neighbours depending on its position).

Show that all the sixty-four entries are in fact equal.

Let T be the set of all triples (a, b, ¢) of integers such that | < a <
b < ¢ £ 6. For each triple (a, b, ¢) in T, take the product abc. Add
all these products corresponding to all triples in T. Prove that the
sum is divisible by 7.

Solve the following alphamatic given that different letters stand
for different digits 0,1,2,3,...,9:

FORTY
TEN
TEN

SIXTY
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104.

103.

106.

1.

HOR.

In a class of 25 students, there are 17 cyclists, 13 swimmers and
8 weight lifters and no one is all the three. In a certain mathe-
matics examination 6 students got grades D or E. If the cyclists,
swimmers and weight lifters all got grade B or C, determine the
number of students who got grade A. Also find the number of
cyclists who are swimmers.

Five men A, B, C, D, E are wearing caps of black or white colour
without each knowing the colour of his cap. It is known that a man
wearing a black cap always speaks the truth while a man wearing
a white cap always lies. If they make the following statements,
find the colour of the cap worn by each of them:

A: I see three black and one white cap.
B: I see four white caps.
C: Isee one black and three white caps.

D: I see four black caps.

Let f be a bijective ( one-one and onto) function from the set

A ={1,2,3,...,n} toitself. Show that there is a positive integer
M > 1 such that

M) = f(i) foreach iec A.

[f™ denotes the composite function f o f o ---o f repeated M
times.]

Show that there exists a convex hexagon in the plane such that:

a. all its interior angles are equal,

b. its sides are 1, 2, 3,4, 5, 6 in some order.

There are ten objects with total weight 20, each of the weights
being a positive integer. Given that none of the weights exceed
10, prove that the ten objects can be divided into two groups that
balance each other when placed on the two pans of a balance.
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109.

110.

CHAPTER |. PROBLEMS

At each of the eight comers of a cube write +1 or —1 arbitrarily.
Then, on each of the six faces of the cube write the product of
the numbers written at the four comers of that face. Add all the
fourteen numbers so written down. Is it possible to arrange the
numbers +1 and -1 at the comers initially so that this final sum is
zero ?

Given the 7-element set A = {a, b, c,d, e, f, g}, find a collection T
of 3-element subsets of A such that each pair of elements from A
occurs exactly in one of the subsets of T.



Chapter 2

Toolkit

2.1 Number Theory
I. Divisibility Tests

a. A number is divisible by 4 if and only if the two-digit num-
ber formed by the last two digits is divisible by 4. For exam-
ple 4 divides 2134824 since 4 divides 24 while 4 does not
divide 57892382 as 4 does not divide 82.

b. A number is divisible by 3 (respectively 9) if and only if the
sum of the digits of the number is divisible by 3 (respectively
9).

¢. A number is divisible by 11 if and only if 11 divides the
difference between the sum of the Ist, 3rd, Sth, ...digits
and the sum of the 2nd, 4th, 6th, ... digits. For instance,
11 divides a 4-digit number abcd if and only if 11 divides
(a+c)-(b+d).

2. The square of any integer is either divisible by 4 or leaves re-
mainder | when divided by 4. Thus, an integer which leaves a
remainder 2 or 3 when divided by 4 can never be a square. It a
prime p divides a square number then p? also divides that number.

17
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. Two integers are said to be relatively prime (to each other) if they

have no common divisors except 1 ie., if their G. C. Dis 1 . For
example, 26 and 47 are relatively prime. In notation we write
(a,b) = 1, if a and b are relatively prime. (More generally a, b)
denotes the G. C. D of a and b. If a divides bc and a and b are
relatively prime to each other then a divides c.

. If x 1s any real number then [x] denotes the largest integer less

than or equal to x. Thus (7] = 3[%] = 0. We always have
(x-D<[x]<x

. For any integer n,d(n) denotes the number of divisors of n. For

example d(4) = 3, d(5) = 2, etc. If n = p{' p3* - - p;" is the prime
factorisation of n then d(n) = (a; + 1)a> + 1)---(a, + 1).

i. If a and b leave the same remainder when divided by m then
m divides (a - b).

ii. If the sum of the remainders of a and b when divided by m is
divisible by m then (a + b) is divisible by m and conversely.

. If p is a prime number then the largest power of p dividing n! is

p" where r is given by

n

p

n

Pe

n

p3

r= + + + -

Note that this is in fact a finite sum.

. Let ('r') denote the number of combinations of n distinct taken r at

a time. Then
n\ _ n'
rl  r(n-n"

For a prime p, we have that p divides (’: ) for all r satisfying 1 <
r<p-1.

. For a prime number p and any integer a, we have that p always

divides (a¢” — a) This is called the Fermat’s little theorem. (Hint
for the proof: Induction on @ and use 8 above.)
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10. If a and b are integers with (a,b) = 1 and the product ab is and

2.2

n-th power then a and b are themselves n-th powers.

Algebra

Polynomials

Remainder theorem: The remainder after dividing a polynomial
p(x) by (x — a) is p(a).

Factorization of a polynomial: If a is a zero of a polynomial p(x),
then (x — @) is a factor of p(x). This follows from (1) above since
pla) = 0. If @), a3, ...a, are the zeros of an nth degree polyno-
mial, then

px) =a(x—a))(x-az) - (x—ay)

where a is the leading coefficient of p(x).

. Fundamental theorem of Algebra: If p(x) is a polynomial of de-

gree n > 1 with real or complex coefficients, then there exists a
complex number S such that p(B8) = 0. It follows that such a poly-
nomial can be totally factorized; i.e., there exist complex numbers

B1,B2,B3, . . ., B, such that

p(x) = a(x = B1)(x = B2).. .(x = By)

If p(x) is a polynomial with real coefficients and if « is a zero
of p(x), then @ is also a zero of p(x), where @ is the complex
conjugate of a.

If p(x) is a polynomial with real coefficients, then p(x) can be
written as the product of its linear and quadratic factors: i.e., we
can find real numbers a, ay, ..., e B1,--.,B1. Y1, - ..,y such that

p(x) = alx—ay) --(x—ag)
x(x =B+ ((x-BN +v7).
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6. Relation between zeros and coefficients of a polynomial: Suppose
a),az, as, ..., a, are the roots of the polynomial
p(x) = a, X" + an1 X'+ ... +ap, (a,#0).

Then the following relations hold:

i=1 i<j
an - 3

Z a,a;ag = ,

i<j<k An

etc.,

ao
amas...a, = (-1)'—.
an

Using these we can calculate the sums of powers of the roots of a
polynomial. For example,

- 2a,-2a,

a

a
2 -
@ +ad++ad =2

Inequalities

1. AM-GM-HM inequality (AM > GM > HM): If q), a3, a3, ...,
a, are n positive real numbers, their arithmetic mean, geometric
mean and harmonic mean satisfy the inequalities

al+a2+"'+a" l
2 (ajaz...a,)r

n
and \ n

@a2 ) 2 S T () + -+ (1)
Equality holds if and only ifa) = a; = ... = a,.

As a consequence, we have the following useful inequality: If a,,
as, . . ., a, are n positive real numbers, then

1 1 1 2
a+ar+---+a))|l—+—+...+ —]|2n".
a @ an
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2. Cauchy-Schwarz inequality: Let ay,aa,...,a, and by, ba, ..., b, be
two sets of n real numbers. Then the following inequality holds:

n 2 n n
2 2
[Zajbj] < [Zaj ][ij }
j=1 j=| j:l
Here equality holds if and only if there exists a real constant A

such thata; = Abjfor 1 < j < n.

3. If aa < ab and a is positive, then a > b; If a is negative then
a < b. Thus while canceling on both sides of an inequality one
must look at the sign of the quantity that is being canceled.

4. Ifa>1,then(1+x)*>1+axforx>-1.If0 <a < 1, then
(1+x)*<1+axforx>-1.
This is known as Bernoulli’s inequality.

2.3 Geometry

1. The areas of two triangles having equal bases(heights) are in the
ratio of their heights(bases).

2. If ABC and DEF are two triangles, then the following statements
are equivalent:

a) LA =/.(D,/(B=LE,(C=/(F.

b)BC_CA_AB

EF ~ FD DE’

AB DE

— T m— d A= .
C)AC DF and ¢/ (D

Two triangles satisfying any one of these conditions are said to be
similar to each other.

3. Appolonius Theorem: If D is the midpoint of the side BC in a
triangle ABC then AB? + AC? = 2(AD* + BD?).
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4. Ceva’s Theorem: If ABC is a triangle, P is a point in its plane

and AP, BP, CP meet the sides BC, CA,AB in D, E, F respectively,

then
BD CE AF

pC Ea FB-'h

Conversely, if D, E, F are points on the (possibly extended) sides
BC, CA, AB respectively and the above relation holds good, then
AD, BE, CF concur at a point.

Lines such as AD, BE, CF are called Cevians.

. Menelaus’s Theorem: If ABC is a triangle and a line meets the

sides BC,CA,AB in D, E, F respectively then

BD CE AF _
DC EA FB

-1,

taking directions of the line segments into consideration i.e., for
example, CD = -DC. Conversely if on the sides BC,CA,AB
(possibly extended) of a trniangle ABC, points D, E, F are taken
respectively such that the above relation holds good, then D, E, F
are collinear.

. If two chords AB, CD of a circle intersect at a point O (which

may lie inside or outside the circle), then AO - OB = CO - OD.
Conversely, if AB and CD are two line segments intersecting at O
such that AO - OB = CO - OD, then the four points A, B, C, D are
concyclic.

. (This may be considered as a limiting case of 6, in which A and B

coincide and the chord AB becomes the tangent at A).

If OA is a tangent to a circle at A from a point O outside the
circle and OCD is any secant of the circle (that is, a straight line
passing through O and intersecting the circle at C and D), then
OA? = OC- OD. Conversely, if OA and OCD are two distinct line
segments such that OA? = OC - OD, then OA is a tangent at A to
the circumcircle of triangle ABC.
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8.

10.

Ptolemy’s theorem: If ABCD is a cyclic quadrilateral, then
AB-CD + AD-BC = AC - BD.

Conversely, if in a quadrilateral ABCD the above relation is true,
then the quadrilateral is cyclic.

If AB is a line segment in a plane, then set of points P in the plane

AP . i ) )
such that — is a fixed ratio A (# 0 or 1) constitute a circle, called

the Appolonius circle. If C and D are two points on AB.dividing
the line segment AB in the ratio A : | intemally and extemnally,
then C and D themselves are two points on the circle such that
CD is a diameter. Further for any point P on the circle, PC and
PD are the internal and external bisectors of ZAPB.

Two plane figures @ and S such as triangles, circles, arcs of a circle

are said to be homothetic relative to a point O (in the plane) if for
. . : OA .

every point A on @, OA meets B ina point B such that OB Is_a

fixed ratio A (# 0). The point O is called the centre of similitude
or homethety. Also any two corresponding points X and Y of

the figures @ and B (e.g., the circumcentres of two homothetic

0).¢
triangles) are such that O, X, Y are collinear and — = A.

Trigonometry

Compound and Multiple Angles.

(i) sin(A £ B) = sinA cos B + cos A sin B,

cos(A £ B) = cos Acos BF sinAsin B,

tan(A £ B) = (tan A + tan B)/(1 ¥ tan A tan B).
(ii) sin2A = 2sinAcosA = (2tanA)/(1 + tan> A);

cos 2A = cos2 A —sin>A = 2cos A - |
=1-2sin?2A = (1 —tan? A)/(1 + tan” A);

tan 24 = (2tan A)(1 - tan? A).
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(iii) sin3A =3sinA - 4sin’ A;
cos3A = 4cos3 A -3cosA:

tan 3A = (3tan A - tan® A)/(1 - 3tan? A).
B. Conversion Formulae.

sin C + sin D = 2sin [(C + D)/2];

sin C - sin D = 2sin [(C - D)/2);

cosC +cosD =2cos [(C+ D)/2] cos [(C - D)/2];
cos C —cos D = 2sin [(C + D)/2] sin [(D - C)/2);
2sin A cos B = sin(A + B) + sin(A - B);

2cos A sin B = sin(A + B) —sin(A - B);

2cos A cos B = cos(A + B) + cos(A — B);

2sin A sin B = cos(A — B) - cos(A + B).

C. Properties of trniangles.

sinA  sinB  sinC

Sine rule:

2R;
. . 2 2
Cosine rule: a= = b~ + ¢~ — 2bccos A;

Half angle rule:

sin% _ \/(s-b)(s—(‘) cos% _ [s(s—a)

bc ’ “be
g - (P
Circumradius: R = 4(21;22‘);
In-radius: r = 4R sin ) sin 0 sin g = (s - a)tan %
Area: A = rs = 1bcsin A = 2R? sin Asin B'sin C

abc
= ﬁ = \/S(S _a)(s = b)(s = C)v
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1

5 V2b2 + 2¢2 — a? and similar expressions for

Medians: m, =
other medians.

D. Miscellaneous.

@) a=bcosC+ccosB, b=acosC+ccosA, ¢ =acosB+
bcos A.

(b) If O is the circumcentre and X is the mid-point of BC, then
(BOX = (COX = A and OX = Rcos A.

(c) If AD is the altitude with D on BC and H the orthocentre,
then AH = 2Rcos A, HD = 2Rcos Bcos C.

(d) If G is the centroid and N the nine-point centre, then O, G,
N, H are collinearand OG : GH =1 :2,ON = NH.

(e) If I is the in-centre, then ZBIC = 90° + (A/2).
(f) The centroid divides the medians in the ratio 2 : 1.

(g) OI* = R?2 = 2Rr = R*[1 - 8sin(A/2)sin(B/2)sin(C/2)];
OH? = R*(1 - 8cosAcos Bcos C) = 9R? — a* - b* - ¢%;
HI? =22 — 4R%*cos A cos Bcos C.

(h) IfA+ B+ C = n, then

B C

sinA+sinB+sinC = 4cosicosicos >
A B C
cosA+cosB+cosC =1 +4sin§sinisin 5

tanA +tan B + tanC = tan A tan Btan C,
sin2A +sin2B +sin2C = 4sinAsin BsinC,
cos2A +cos2B+cos2C=1+2cosAcos BcosC.

(i) Area of a quadrilateral ABCD with AB = a, BC = b, CD =
¢, DA =d, A + C =2« is given by

A= \/(s —a)(s = b)(s = ¢)(s = d) — abed cos? ar.
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If it is cyclic, then

A = /(s - a)(s - b)(s - c)(s - d).

Its diagonals are given by

ab + cd » BD ad + bc

AC = ‘/ (ac + bd)(ad + bc) _ [(ac + bd)(ab + cd)

2.5 Combinatorics

1. a. The sum rule: If A and B are two disjoint finite sets, then

|A U B| = |A] +|BI.
In general, If A}, A2, .. ., A, are n pairwise disjoint finite sets
then

A UA U ...UA,| = |A)| +|A2] + ... + |A,].

b. The product rule: If A and B are two finite sets, then
|A x B| = |A| - |BI.
In general, if A}, Aa, ..., A, are n finite sets then,
|A] X A2 X ... X Al = |A)] - |A2].. . |ALl

2. Pigeon-hole Principle: If n + 1 objects are distributed at random
into n boxes, then at least one box has at least two objects. A
more general form of this principle is as follows: If nk + 1 objects
are distributed at random into n boxes, then some box has at least
k + 1 objects.

3. Principle of Inclusion and Exclusion:. If A and B are two finite
sets, then |JAU B| = |A|+|B|—-|AN BJ. For three finite sets A, B, C we
have [AUBUC| = |A|+|B|+|C|-I1ANB|-|ANC|-IBNC|+|ANBNC]|.

4. Some properties of Binomial Coefficients:

o (7)=(,",) osren
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) e

c. The binomial theorem: If n is a positive integer, then

n

S

r=0

X+ ('l')x'-'y+ (;)x'-zyz )
d. @) (8)4'(’11)*(;)**(:) o
o ol

5. a. [Combinations with repetitions]: Suppose there are n types
of objects and we wish to choose k elements repetitions be-
ing allowed. (We assume here that each of n types of objects
is available any number of times). Then the number of such

(

nek-1
choices is * « ). Here n may be less than, equal to or greater

than k.

b. [Permutations with restricted repetitions]: Suppose there are
n objects of which k) objects are of first kind (and identical),
k, objects are of second kind, . . . , k, objects are of r-th
kind (sothat k; + ko + k3 + ... + k, = n). Then the number
of permutations of all the n objects is

n!

kitky!.. k!

This number is often denoted by (k..k:'...k,) and is called a
multinomial coefficient.

¢. [Permutations with unrestricted repetitions]: If there are r
types of objects with unlimited supply of each type, then the
number of permutations formed by n of them is .
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a. The number of all subsets of an n-element set is 2". The
number of nonempty subsets of an n-element set is 2" - 1.

b. The number of one-one functions from an m-set to an n-set

(m < n)is"Ppy = g2 = n(n— 1)(n - 2)...(n —m +1).

c. The number of bijections from an n-set to itself is n!.
d. The number of functions from an m-set to an n-set is n".

e. The number of distinct terms (monomials) in the expansion

of (xy +x3 + ...+ x,)"is ('”:").

7. Suppose for each non-negative integer n is associated a quantity

xp. If x, can be expressed in terms of xn — 1, xn -2, ..., xo us-
ing a relation, such a relation is called a reccurence relation. For
example, if F, is the n-th Fibonacci number, then

Foapy=F,+Fn-1,n2>1,

where Fy = F) = 1. See also problem 83.

. An useful technique in combinatorial problems, especially identi-

ties, is counting in two ways. For example, the relation

(n) (n - l) (n - l)

= +

r r r-1

shows that the number of combination of n objects taken r at a
time can be obtained by counting it in another way as follows.
We fix an object, and from among the remaining n — 1 objects
we count the number of combinations of r objects to get (":').
Thus we have left out the possibility of this fixed object to be one

among the selected. The number of such possibilities is precisely
equal to (""). See also problem 78.

r-1
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Solutions

3.1

Number Theory

Let the required number be ...abc7. Since it is given that
| 5(...abcT) = 1...abc

we find that ¢ = 5. Putting this value of ¢ back in the equation
we have 5(...ab57) = 7...ab5 we gives b = 8. Continuing this way
till we get 7 for the first time, we find that the required number is
142857.

To test the divisibility of the number N = 19202122...919293 by
3 or 9 we should find the sum of the digits of N. Noting that 1
occurs 9 times in the digits from 19 to 93 (in 19, 21, 31,..., 91),
2 occurs 18 times (in 20, 21, 22, ..., 29, 32,42, ...,92) etc. we
find the sum of the digits of N to be 717. This number is divisible
by 3 (since 7+ 1 + 7 = 15 is so) but not by 9. Thus the highest
power of 3 dividing N is 3.

. Clearly Z > X,Y. Suppose Y > X. Since Z > Y, we have Z >

Y + 1. Now

Zn - yn
Z-NZ""+Z" v +.+Y" Y

Xﬂ

29
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> (Y +1)=Y)nx"!

1.e.
X">nX"' or X>n.

Thus Z, X, Y are all bigger than n.

. Suppose, on the contrary, that

loglom _ g
log,on b

where a and b are integers. But then we would have mb = n®
which is impossible since m and n have no common factors and a
and b are integers. Therefore the given number is not rational.

. First note that the set of primes dividing x is the same as the set

of primes dividing y. Take any prime p dividing x (and hence y
also) and suppose it occur to the power @ in x and S in y (that is,
p® is the maximum power of p dividing x and p? is the maximum
power of p dividing y). Then

x"=_v"=>p"“=p”"=#aa=ﬂb'

=a|Bband b | aa
= a|Band b | a since (a,b) = 1.

Write 8 = aBp and a = ba),. Then

paa — pﬁb = paba,, — pabﬂ,,

= a, =ﬂ,,.

For each prime p dividing x (and hence y) get the integer a,.
Verify that the integer n = [],, p° (this notation means n is the
product of the numbers p®r for each prime p dividing n) satisfies
the required properties.
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6. Suppose 2™ +3" = a®. Since any square number will leave remain-
der O or 1 when divided by 3 we get that m is an even number (
as any odd power of 2 leaves remainder 2 when divided by 3).
Similarly, using the fact that any square number is either divisible
by 4 or will leave remainder 1 when divided by 4 we find that n is
also an even number. Put m = 2r and n = 2s. We have

22" = g% — 3% = (a - 3°)(a + 3°).

Hence . _
@-3)=2" and (a+3%)=22"

We would then have 2 - 3° = 2/(22-% — 1), which implies that
i=1 Thusa-3*=2anda+3 =2¥"ije,3 =22,
Suppose s > 1. Then r > 3. But then the above equation is
impossible since when divided by 8, the left hand side 3* would
leave remainder 1 or 3 while the right hand side would leave the
remainder 7. Thus s = 1 is the only possibility; when s =.1, that
is n = 2, we have the solution 2% + 32 = 25. Thus (m, n) = (4,2)
is the only solution.

7. If nis even, then n* + 4" is also an even number greater the 2 and
hence not a prime. So let 7 be odd; we will show that n* + 4" can
always be factored: (Note thatnis odd = n + 1 is even.)

n4 +4" = n4 + 22'! = (nZ + 2n)2 _2n+ln2
[(n* +2") + 2" D 2n)((n? + 27) - 20+ 1V2p),

It is only required to observe that each of the factors above is
greater than 1 when n > 1.

8. Let n = aabb be a number satisfying the given properties. Since
n is a square the only possibilities for b are 1,4,5,6 or 9. Among
them 1,5,6 and 9 are not possible since the numbers aall, aa55
and aa99 leave remainder 3 and aa66 leaves remainder 2 when
divided by 4, which is not possible if n is a square. So b can only
be 4. Clearly 11 divides n = aabb. Since n is a square and 11
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is a prime, 112 also divides n = 11 x a0b that is, 11 divides aOb
which implies 11 divides a + b. Since b can be only 4, the only
possibility for a is a = 7. Noting that 7744 = (88)? is indeed a
square, we conclude that 7744 is the only number with the given
properties.

This problem uses the fact that the cube of any integer when di-
vided by 7 leaves remainder 0, 1 or 6. If any of the numbers a, b, ¢
is divisible by 7, then the given expression is also divisible by 7.
So suppose none of a, b, ¢ is divisible by 7. Then the possible re-
mainders for a*, b3, ¢ when divided by 7 are 1 and 6. Since there
are three numbers, a3, b3, ¢3, and only two possible remainders, 1
or 6, at least two numbers, say, a® and b?, leave the same remain-
der. But then (a@® - b*) and hence the given expression is divisible
by 7.

We have (f%) = (I—%)%%ﬁo!;_-_ We should look for a 3-digit prime
which occurs more often in the numerator than in the denomina-
tor so that it survives in (f%g); (since the denominator is a square,
primes always occur to even power in the denominator) that is, we
should look for a prime which occurs only twice in the denomi-
nator but thrice in the numerator. Any prime in the range from
5000 to 2000/3 = 666% will satisfy our requirement and 661 is

the largest prime in that range.

We give two solutions:

Solution (i): Since a, b, ¢ are all positive integers,a > cand b > c;
say, a = ¢ + m and b = ¢ + n for some (positive) integers m and n.
Then we have

I+I=I+I_
a b -

| |
c c+m c+n ¢

On simplification we get ¢> = mn.

Here m and n cannot have any common factors. For, if d > 1
divides m and n then it divides ¢ and so a and b as well, which
is not possible since it is given that a, b and ¢ have no common
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factors (other than 1). Then m and n are themselves squares, say
m = k% and n = [2. Then

a+b=c+m+c+n=m+n+2c'=k2+12+2kl=(k+1)2.

Solution (ii): Let d = (a, b) be the g.c.d. of a and b.We will show
that a + b = d*>. Write a = a,d and b = b,d. Since d is the g.c.d
of a and b, (a;, by) = 1. We thus have

or

a,b) c
Observing that (d,c) = 1| and (a) + b),a1b)) = 1, we get that
a) + by =d and a;b; = c. But then

a+b=d(a| +b|)=d2.

We are to find an n such that 10'%% is the highest power of 10
dividing n!. Since multiples of 2 occur far more often than multi-
ples of 5 it is enough to find an n such that 5'%%3 is the maximum
power of 5 that divides n!, that is we have to solve for n in the

equation:
n n n
1993 = [§]+[2_5]+[|25]+""

R NEINET

2+i+ ke +
S 25 125
n 1 1

< =ll+=+—=+-
5[ 5 25
ni(s n

< =l=]==
5(4) 4

i.e., n > 7972. Since

7972 7972 7972 7972 7972
+ + + + = 1989,
5 25 125 625 3125
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we have to arrange for four more multiples of 5. Note that 7975!
will have one more multiple of 5 and one more multiple of 25
than 7972! and 7985! will have 3 more multiples of 5 and 1 more
multiple of 25 (that is, in all 4 more multiples of S) than 7972!.
Thus 7985 is the required number. Note that 7986, 7987, 7988
and 7989 also satisfy the requirement.

Note that 1990 = 199 x 10 and that 199 is a prime number. By
Fermat’s (little) theorem 199 divides (2!%° - 2), that is,

2'% = 199n + 2,
for some integer n. Raising both sides to 10 power we get

2199 = (199n + 2)'0

(199n)!10 + (110)(199n)9 244210

Note that 2'9%0 and 2'0 have the same last digit, 4, and thus 10
divides 2'%% - 210 But 199 also divides (2'9% - 2!9). Therefore
1990 divides (2'%9° - 2!9) or, in other words, 2!® = 1024 is the
remainder when 2!%%0 is divided by 1990.

We have the obvious solutions (7,0) and (0, 7). So suppose x # 0
and y # 0. We have

(xy =7)? = 2 +y*

or
(xy)? — 14xy + 49 = 2 + y?
or
(xy)? = 12xy + 36 + 13 = X% + y* + 2xy
or
(xy—6)2+ 13 =(Jr+y)2
or

13 =[(x+y)+ (xy - 6)}(x+y) - (xy - 6)].
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16.

Since 13 is a prime number the only possible factors are +1 and
+13,1.e.,

D(x+y)+(xy-6)=13and (x+y) - (xy-6) =1

or

@) (x+y)-(xy—-6)=-13and (x+y) + (xy —6) = —1. When
solved, these alternatives give the solutions (3, 4) and (4, 3). Thus,
(7,0),(0,7),(3,4) and (4, 3) are all the solutions (in non-negative
integers) of (xy - 7)> = x* + y7.

Let [ yn] = k. Then k% < n < (k + 1)2. Also since k* divides n?,
we have that k2 divides n? and hence k divides n. Thus the only

possibilities for n are n = k% + k and n = k> + 2k.
(i) Let n = k2 + k. Then

B 1nt = 1K +k)? =K+ 26 + K
= K| =k=1

ie,n=2.
(ii) Let n = k2 + 2k. Then

K3 1n? = k3| (K2 +2k)% = k* + 4k3 + ak®

which implies that k3 | 4k? or k | 4. Therefore, k = 1,2 or 4.
When k = 1, 2,4, we get the corresponding values 3, 8 and 24 for
n. Thus n = 2,3,8 and 24 are all positive integers satisfying the
given conditions.

Consider the product n(n + 1)(n + 2)(n + 3) of four consecutive
numbers. Suppose n > l asl-2-3.4 = 24 is anyway not a
cube. We use the fact that if the product of two relatively prime
numbers is a cube then each of the two numbers is itself a cube.

Case (i): Suppose n is even. Then (n + 1) is relatively prime to
n(n + 2)(n + 3). Thus if n(n + 1)(n + 2)(n + 3) 1s a cube we must
have that (n + 1) and n(n + 1)(n + 3) are cubes. But n(n + 2)(n + 3)
is not a cube since it lies strictly between two consecutive cubes:

(n+|)3 =n+3nt +3n+1 <nn+2)n+3)
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and
nn+2)n+3)<n+ 2)3 =nt+6n° +12n+8.

Thus, n(n + 1)(n + 2)(n + 3) 1s not a cube for even n.

Case(i1) Suppose n is odd. The proof is similar by noting that this
time n(n + 1)(n + 3) is prime to (n + 2).

For both parts, the proof will be by induction on n. (i) Forn = 1,
321 2% + 1 and so the statement is truc for n = 1.

SupPose 3k+1 1 23 4 1 for some k. We have to show that 3%+2 |
24,

3
32 1= 3 (2% +1)

e 3% 2% 4 14 3.2%2% 4+ 1),
Since 3k + 3 > k + 2, the above expression implies that
2" e 432Y0Q% +),

But 3**1 | 2% + 1 by the induction hypothesis and hence
kel

3k42 3(23‘ + |). Hence 3**?12%" + 1 and we are through.

(i1) Here the induction hypothesis is that for any n, 3"*2 does not

divide 2V + 1. For n = 1 it is true that 3* does not divide 23 + 1.
e . . [}

Suppose that 3**> does not divide 2% + 1 for some k.

Proceeding as in (1) we get that
3 L Il Il
2 w4327 (28 +1).

Now if 3**3 divides 2" +1, then 3**? divides 3-2% (2* +1) which
in turn implies that 3**2 divides 2% + 1 which is a contradiction to
the induction hypothesis. Therefore 3*** does not divide 2 4
and that finishes the proof.

Since a, v are positive integers we have x > nand v > n.Write
x=n+aandy = n+ b where u, b are positive integers. Thus
1 1 1

+ = -
n+a n+b n
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19.

which simplifies ton* = a - b.

Retracing the steps, we find that if n> is written as a product of
two numbers say, p and ¢ then

I 1 I
+ = -
n+p n+q n

v
same as the number of divisors of n?, d(n*). If n = p{' - p3* - p}

is the prime factorisation of n we know that

Thus the number of solutions of {- + - = TI: for a given n is the

dn®) = Qa; + 1)2a2 + 1)..2a4 + 1).
So if we want all the n with s(n) = 5, those n should satisfy:
din’) = 5.

But this can happen if and only is n is of the from p* for a prime
p. Thus {p? | p is prime} is the set of all positive integers n for
which s(n) = 5.

Since the product of k consecutive integers is divisible by k!, A(n)
is an integer. We compare the highest powers of 2 dividing the
numerator and denominator to determine the nature of A(n).

Suppose we express n in the base 2, say,
Y I-1 1-2 " _
n=aq?2 +aq_127 +w 22" +...+a-2+ay, =1

The highest power of 2 dividing n! is given by

n

2!

-

5= +

n n
_)—2 + -2—.;‘ + ...+

where [ x] denotes the largest integer smaller than .

n
2

But,forl <m </,

n

m
&

Al m

=a?2 "+ q2 !

+- DR +(llllc
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Thus

I

m=]|

= i iakzk—m

m=1 k=m

= Zl:ak[iZ"’—I]

m=1

= ak2k — Zak

k=0 k=0
= n — {sum of the digits of n in the base 2}

Hence the highest power of 2 dividing (n!)? is 2s = 2n — 2(sum
of the digits of n in the base 2). Similarly the highest power of 2
dividing (2n)! is t = 2n— (sum of the digits of 2n in the base 2).
But the digits of n in base 2 and those of 2n in base 2 are the same
except for a zero at the end of the representation for 2n.

Thus
t=-2s=aj+a,-)+a-2+...+a) +ap

where the a; are the digits of n in base 2. Note that a; = 1. Hence
t —2s > 1. But A(n) is even if and only if t — 2s > 1. Hence it
follows that A(n) is even for all n.

Moreover A(n) is divisible by 4 if and only if t — 2s > 2. Since
A(1) = 2, 4 does not divide A(1). Suppose n = 2 for some I. Then
a=landa; =0forO0<i</-1. Hencet-2s =1 and A(n) is
not divisible by 4. On the other hand if n is not a power of 2, then
for some /,

n=2 -i-a,_|2"l +a;_22’“2 +...+ag
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21.

22.

where a; # 0 for at least one { and hence must be equal to 1. Thus
t-2s 21 +a; > 2. Itfollows that A(n) is divisible by 4 if and
only if n is not a power of 2.

Remark: Given any prime p, the highest power s of p dividing n!
is given by

n — (sum of the digits of n in the base p)
p-1

s=

First we observe that 2,3,5 divide A. So we may take A = 293857,
Considering 2A,3A and 5A, we observe that o + 1,8, y are divisi-
ble by 2; @,8 + 1,y are divisible by 3; and @, 8, y + | are divisible
by 5. We can choose @ = 15 + 30n; B =20+ 30n; y = 24 + 30n.
As n varies over the set of natural numbers, we get an infinite set
of numbers of required type. We may also take A = 21732052430
to get a different such infinite set.

We may assﬁme that both x, y to be positive. We observe that p is
odd. Taking the difference, we get

p’-p=20" -2

Write this in the form p(p — 1) = 2(y — x)(y + x). Since p is odd
p cannot divide 2. If p divides y — x, then p < y — x. But then
p -1 > 2y + 2x is not possible. Hence p should divide y + «x.
This gives p < y+xand p -1 2> 2(y — x). Elimnating y, we
obtain p + 1 < 4x. Since p + 1 = 2x%, we get 2x> < 4x and hence
x < 2. Taking x = 1, we get p = |, which is not a pnme. If x = 2,
we get p = 7. Thus p = 7 1s the only prime satisfying the given
condition.

We may assume that a > b > c. The given equation lcads to
3
3<(1+2) . Ifc23, then

3 3
|+l)51+l =6—4<3.
c 3 27
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We conclude that ¢ = 1 or 2. Consider the case ¢ = 1. We obtain

T

This simplifies to ub — 2a — 2b - 2 = 0. This can be written in the
form (a — 2)(b-2) = 6. Weget (a—-2,b-2) = (6,1)o0r(3,2);
ie., (a,b) =(8,3) or (5,4).

In the case ¢ = 2, we similarly obtain (a - 1)(b — 1) = 2. Solving
this equation in positive integers, we get (a, b) = (3, 2). Hence the
ordered solutions are (a,b,c) = (8,3,1),(5,4,1),(3,2,2).

Takea = 2" + 1/2, b = 2"*! + 1/2. In the binomial expansions of
a* and b*, 1 < k < n, we see that all the terms except the last are
integral and the last terms are each equal to 1/2%. Hence a* - b
is an integer for 1 < k < n.

For p = 2 the given quotient is not even an integer and so we
can assume p is an odd prime. Then by Fermat’s Little theorem
271 — 1 s divisible by p. Suppose that for some integer a, 27~' -
1 = pa®. Since p is odd we have that

QP2 - 2P D2 4 1) = pa’.

Both the factors on the L.H.S. are odd and hence they are rela-
tively prime to each other which implies that p divides exactly
one of the two factors. Therefore cith

2(p-|)/2 -1= px:.’.‘ 2([’*')/2 +1= .Vz

or

2(/)—1)/2 - 1= XZ’ 2(1’—|)/2 +1= pyz.
Case (i): Suppose 27~V/2 | = px? 2-12 4 | = y2_ But then
20r=1/2 = (y = 1)(y + 1) for which the only solution is y = 3i.e.,

p = 7. When p = 7 observe that the given quotient is indeed a
square.

Case (ii): Suppose 2712 _ | = 2 20-D/2 4 | = py?. Then if
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p > 3 we get that x? leaves remainder 3 when divided by 4 which
is impossible. Thus p can only be equal to 3; when p = 3 also we
observe that the given quotient is indeed a square.

Thus the primes p for which the quotient (2°~! - 1)/p is a square
are p =3,7.

25. Eliminating z from the given set of equations, we get
X +y3 + {1 --(Jr+_v)|2 =1.
This factors to

(x+y)(x2—x_v+y2+x+_v—2)=0.

Case 1. Suppose x+ y=0. Then z = | and (x,y,2) = (m, -m, 1),
where m is an integer give one family of solutions.

Case 2. Suppose x + y # 0. Then we must have
xz—xy+y2+x+y-2=0.
This can be written in the form
Rx-y+ 1) +3(y+ 1) =12
Here there are two possibilities:
2x-y+1=0, y+1==2;

or
2x—-y+ 1 =3, y+1==I.

Analysing all these cases we get the following solutions:
(O$ ls O),, ('—2' _3. 6). ( l » O, O),

0,-2,3),(-2,0,3).(-3.-2,6).
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3.2 Algebra

26. The largest number is V3. Obviously 1 < V3 and V2 < V3. We

show that {fn > "Vn + 1 for n > 3. This is equivalent to

]n
(l+—) <n for n2>3.
n

The binomial theorem gives

I+1"—1+n]+n1+ " l+---+1
n) 1/n \2/n? k| nk n"’

But
(n)_l_ _oan-1)(n-2)...(n-k+1)
klnk k'nk
1 1 2 k-1
- =302 (-5
|
< —.
k!

Hence forn > 3

I+I"< |+I+|+ +l
n 120

Thus forn > 3,

In
(I+-) <3<n.
n

27. Suppose p/q (with (p,q) = 1) is a rational root of the given equa-

tion
2
ax +bx+c=0.
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28.

Then

ap® + bpq + cq* = 0.
This relation shows that g divides a and p divides c. Since a, b, ¢
are given to be odd it follows that so are p,q. But then in the

above sum the L.H.S. is a sum of three odd numbers and hence
cannot be equal to 0.

Observe that
2 2
1 1 | 1
(a+;) +(b+;) = a2+;5+b2+;2-+4
1

2
(a+b)2—2ab+(l+—)
a b

i

2
-—+4

ab
1 — 2ab
= |—20b+W+4.

Using AM-GM inequality, we get
a+bY 1

2

abS(

Hence we get

1\ 1\ 1 25
(a+;) +(b+;) 2(]—5)(14—16)4—4—7.

Remark: If ay,a, ..., a, are n positive real numbers such that a, +
a+az3+---+a, = 1,then

n 2 212
Z(“i*%) Z“_’f_’:'_>,
J

In fact, Cauchy-Schwarz inequality gives

2
n

Sfov ) 2330 2)

J=1
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But AM-HM inequality gives

| 1 n? X

_—t — 4 — 2 =n°.
(ll a2 a" al +a2+"'+a"

Thus

n 1 2 | -
Za,-+— > =(1 +1°)".
aj; n

j=1

Suppose there are distinct natural numbers a, b, ¢, d such that
a+b=c+d°
a+b=c+d.
The first relation gives
(a+ b)(a2 —-ab+ bz) =(c+ d)(c2 -cd + dz)

Using this second relation (note that a + b # 0) we get

a*-ab+b* = c* - cd + d*.

This forces ab = ¢d. Butthena-b=x(c—d). Ifa-b=c -d,
hena =cand b =d. Ifa-b = —(c - d), thena = d and
b = c. This contradicts the distinctness of a, b, ¢ and d. (Observe
that, the conclusion is true even when a, b, ¢, d are distinct real
numbers such thata + b # 0.)

Taking x = 1 in the given equation:

2 o]
(1 +x+x')25 =ao+a|x+a2x‘+---+a50xs°
we get
25
37 =ap+a) +a;+---+asg.
Similarly. x = -1 gives

|l =ay—ay+ar -az +--- + asg.
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Adding these, we have
1 + 3% = 2(qg +ay+aq+---+asp.)
But

1432 = 3% -1+2
= 23% +38 432 4. 4141

There are even number of odd terms in the braces, and hence the
sum is even. This implies that ap + a; + as + - - - + asp is even.

Assume, if possible,
f(x)=(x+ a)(.rc3 +ax® + bx + ¢).
Comparing the coefficients of like powers of x, we get
a+b=26,

ab+c =952,
ac +d =18,
ad = 1989.

But 1989 = 3213 - 17. Thus 13 divides ad and hence 13 divides
a or d but not both. If 13 divides a then 13 divides d = 78 - ac
which is not possible. Suppose 13 divides d. Then 13 divides
ac. But since 13 does not divide a, 13 divides ¢ which implies
13 divides ab = 52 — ¢ and so b is divisible by 13 which in turn
implies 13 divides a = 26 - b, a contradiction. Therefore f(x) has
no linear factors.

If f(x) = (2% + ax + b)(x* + cx + d), then again,
a=c =26,

b+ac+d=752,
ad + bc = 78,
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bd = 1989.

Since 1989 = 32 .13 - 17,13 divides bd. This implies that 13
divides b or d but not both. If 13 divides b, the 13 divides ad
(= 78 — bc) and hence 13 divides a. But then 13 divides d (=
52 - b - ac) a contradiction. Similar argument shows that 13
divides d is also not possible. We conclude that f(x) cannot be
written as a product of two polynomials with integral coefficients,
each of degree < 4.

Let x1, x2, x3, . . ., X¢ be the roots of the polynomial equation
Brad+bt+cx+d=0.

Since a, b, c,d are not all zero, at least one x; must be nonzero.
Using the relations between the coefficients and the zeroes of a
polynomial, we have

ij =0, Z xix; = 0.

6
j=1 1<i<j<6

But then

If all x; are real, then the above relation forces x; = 0for1 < j <
6. But not all x; are zero. We conclude that not all the roots can
be real.

Suppose x), x2, x3 and x4 are the roots of the equation

x4+px3+qx2+rx+s=0.

Then, we have
X1+x2+x3+x4 =-—p,
X1 X2+ X1 X3+ X1 X4 + X2X3 + X2X4 + X3X4 = (g,

X1X2X3 + X} X2X4 + X) X3X4 + X2X3X4 = -7,
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X1 X2X3X4 = S.
Hence using AM > HM,

i
pr = [Z x,][zl: ;'] X) X2 X3X4
> 16s.
Similarly, using AM > GM
g = XX+ X X3 + X1 X4 + X2X3 + X2X4 + X3X4
2 6(x1x;x:x4)3
= 6s'/2,

This gives ¢> > 36s. Note that equality holds in both the inequal-
ities if and only if x; = x2 = x3 = x4.

34. Puttingx=1-a,y=1-bandz=1-c,the gwen inequality is

‘equivalent to
l-x 1-y 1-2
X y Z
subject to the condition

> 8,

O<x<l, O<y<l, O<z<l, x+y+z=1.
This can be rewritten in the form
(1 = x)(1 =y)1 -2) = 8xyz.

Expanding the left hand side and using x + y + z = 1, the given
inequality reduces to

Xy + yz+ 2x 2 9xyz

or
1 1 1

-+=-+-=-20.

Xy z
But this (and hence the given inequality) is a consequence of AM
- HM inequality. The equality holds in the given inequality if and
onlyifa=»b=rc.



48 CHAPTER 3. SOLUTIONS

35. Consider 2001 numbers

%, 1001 < k < 3001.

Using AM - HM inequality, we get

[mil k][ mzo‘: %]>(200|)2.

k=1001 k=1001

But
3001

Z k = (2001)2.

k=1001
Hence we get the inequality
mi ! > 1
k=1001 k
On the other hand, grouping 500 terms at a time, we also have
wor
s = ) .
k=1001
500 500 500 500 1

< 7000 T 1500 T 2000 T 2500 T 3001
T R T
< —4+-t—F =+ —
> 373757 3000
3851 4
= ,— < -,
3000 3

Note: We can sharpen the above inequality. Consider the sum

There are 2n + | terms in the sum and the middle term is 2"'” . We
can write the sum in the form

1 N 1 |
S = 2n+l+k§(2n+l+k+2n+l—k)
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| 2 < |
- 2n+l+(2n+l); RS

For0 <a < % we have

<1+ 2a.

l+ac<
-a

1 +
= 2n+ 1

5 < 2n+| 2n+IZ\ 2n+

This on simplification gives

2 n 4 n ,
+ — K<S<l+—m— '
2n +1)3 ; Q2n+1)3 ;

Now using the identity

Thus we get the bounds

2

2n+l+2n+lk <$

and

'Z'kz _n(n+1N2n+1)
- 6

the inequality simplifies to

nn+1) 2 n(n+1)
+—<S < + =——.
32n + 1)? 32n+1)?

But for n > |, we also have

2 nn+1) 1
= £ —— < -
9" 2n+1)2 " 4

This leads to

29 7
?7'<S<6
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We have,
y+z=4-x
Y+ =6-2.

From Cauchy-Schwarz inequality we get,

1
y2 +222> §(y+z)2.

Hence,
1
6—X2 2> 5(4-x)2.
This simplifies to (3x—-2)(x—2) < 0. Hence we have 2/3 < x < 2.

Suppose x = 2. Then y + z = 2, y* + z> = 2 which has solution
y =z = 1. (Similarly x = 2/3 is also possible (venify).

Since the given relations are symmetric in x,y and z, similar as-
sertions hold for y and z also.

Consider the polynomial f(x) — 2. This vanishes at a,, a3, a3, a4
and as. Hence

f(x)=2=(x—-a))(x-a2)(x—a3)(x - as)(x — as)g(x)

for some polynomial g(x) with integral coefficients. If f(b) = 9
for some integer b, then

7 =(b-a)b-a))b-a3)b-as)b - as)g(b)

which is impossible because the integers b—a),b—-ay,...,b—as
are all distinct and 7 cannot be factored into more than 3 distinct
numbers. [Best we can dois 7 = (=7)(—-1)(1).]

Remark: The same conclusion holds even if f(x) assumes the
value 2 for only 4 distinct integers.

Putting y = 1/(1 - x), the given functional equation can be written
as

£+ fO) = 2('; —.v)
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If we set z = 1/(1 —y), then x = 1/(1 — 2z). Hence we also have
the relations

S+ f(2) =2 (l - z)
y

f@+ f(x) = 2(% —x)-

Adding the first and third relations, we get

[£S)

2(f(x)+ f) + f(2)) = 2(lx - x) -2y +

Using the second relation, this reduces to

we get

Thus f(x) = (x + 1)/(x = 1) is the only function satistying the
given functional equation.

39. We can write

pmp(n+1) = (r12 +an + b) ((n + l)2 +a(n+ 1)+ h)
= nz(n + l)2 + a{n(n + I)2 + nz(n + I)’
+b {nz +(n + 1)2’ + uzn(n + )+ by
ab(2n + 1)
= nn+ 1Y+t + b +2an i+ 1) +

i
2bn(n + 1)+ 2nab + a™n + an(n + 1) +
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ab+b
= (n(n+ l)+an+b)2 +
an(n+1)+an+b)+b
= p(n(n+1)+an+b)
Aliter: If a and B are the roots of the equation p(x) = 0 we can
write:
p(x) = (x — a)(x - B).
Then

pm)pin+1) = (n-a)n-B)n+1-a)n+1-p)
= (m-a)n=-B+1)n-B(n-a+1)
= {n(n-P)+n-an-p)-c)
X {n(n -a)+n-pB(n-a)-p)
= (M- a)M - B) = p(M)

where
M=n*-n@+B)+aB+n
=n’>+na+b+n.
Remark: Another way is to consider the quadratic equation
M2 +aM +b=(n*+an+b)(n+1)* +a(n+1)+b)

and to show that this equation has integer roots or equivalently,
that the discriminant

@ -4b- @ +an+b)(n+ 1P +a(n+1)+b)]

is a square.

40. If a > 1, then for any m,

l+—-+—=+---+— = <

1
a a a™ 1-1 a-1




3.2. ALGEBRA 53

4].

42.

Suppose ay, az,as,...,a, are in n distinct odd natural numbers
each having no prime factor larger than 5. Thus for each ¢ either
a; = 1 or the only primes dividing a; are 3 and 5. Hence, for a
sufficiently large integer m

1 1 1 1 1 1
—+t =+t = < |l+=4+=+ -+ ==
a a a, 3 32 3m
l+l+l+ +1
5 52 5m
< E§=E<2
2 4 8

Suppose a, b, c are distinct integers such that p(a) = b, p(b) = ¢
and p(c) = a. Then

pla) - pb)=b-c, pb)-p()=c-a,

p(c) — p(a) =a-b.
But for any two integers m # n, m — n divides p(m) — p(n). Thus
we get,
a-bb-c, b-clc-a, c-ala-b.
These force a = b = ¢, a contradiction. Hence there are no inte-
gers a, b, and ¢ such that p(a) = b, p(b) = c and p(c) = a.

a b c
that
Observe tha b+c+c+a+a+bequals

(a+b+c){ 1 1 + : }—3

+ a
a+b b+c a+c

which in turn equals

+
a+b b+c c+a

%(a+b)+(b+c)+(c+a){ : : + ! }—3.

But by AM > HM we have that the above quantity is

1 3
> - -— = -,
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Here equality holds if and only ifa = b = c.
Suppose a, b, ¢ are arranged such that a < b < ¢. Then

a b c a c c
+ + < . + +
b+c c+a a+b a+c c+a a+b

c
= 1+
a+b
< 1+1=2

since ¢ < a + b by the property of a triangle.

The relation (i) gives

£(1990) - 90 1990 - 19| —

f(1990) 1 990
90

1990 - 1976
= 14

Using the relation (ii),

1990 < £(1990) < 2000

90 90 90
or £(1990) 20
”1— —
90 90 2290
Thus (1990
( )
= 21 or 22.
> ‘ or
If
£(1990) e
90
then
f(1990) = 14 + 90 - 21 = 1904.
If
l1990
then

£(1990) = 1994.
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44,

45.

46.

The given inequality reduces to
a*cd + b*cd + c*ab + d*ab < 1/64.

We observe that a’cd + b%cd + c?ab + d*ab = (ac + bd)(ad + bc).
Hence using the inequality xy < (x + y)*/4, we get

. (ac + bd + ad + bc)’

< 2 .

But ac + bd + ad + bc = (a + b)(c + d). One more application of
the same inequality gives ac + bd + ad + bc < (a + b + ¢ + d)* /4.
Combining both these inequalities and using the data thata + b +
c +d < 1, we get the required inequality.

a*cd + b*cd + ctab + d*ab

If (x — @) divides a polynomial g(x) then g(a) = 0. Let p(x) =
ax> + bx? + cx +d. Since (x — 1) divides p(x) + 2, we get

a+b+c+d+2=0.
Henced = -a-b-c-2and

px)+2 = a(@® -1 +b(%-1)+c(x-1)
= (x=D{a® +x+ 1) +bx+1)+c}.

Since (x — 1)? divides p(x) + 2, we conclude that (x — 1) divides
a(x®+x+1)+b(x+1)+c. This implies that 3a+2b+¢ = 0. Similarly,
using the information that (x + 1) divides p(x) — 2, we get two
more relations: —a+ b-c+d-2=0;3a-2b+ ¢ =0. Solving
these for a,b,c,d, we obtain h = d = 0, anda = 1,¢c = =3.
Thus there is only one polynomial satisfying the given condition:
p(x) = X3 = 3x.

Since the right hand side is positive, so is the left hand side. Hence
X must be positive.

Let x = n+ f, where n = [x] and f = {x}. We consider two cases:
Case L. 0 < f < 1/2: In this case, we get [2x] = [2n + 2f] = 2n,
as 2f < 1. Hence the equation becomes

1 1

1
;+§;—f+§.
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This forces (1/n) + (1/2n) > 1/3. We conclude that 2n - 9 < 0.
Thus n can take values 1,2,3,4. Among these n = 2,3,4 are all
admissible, because for n = 2,3,4 we get f = 5/12,/6,1/24
respectively which are all less than 1/2; while n = 1 is not ad-
missible, because n = 1 gives f > 1/2. We get three solutions
inthis case; x = 2+ (5/12) =29/12;x =3 +(1/6) = 19/6; x =
4+ (1/24) = 97/24.

Casell. (1/2) < f<1: Nowweget[2x] =2n+1,as 1 <2f <2.
The given equation reduces to

1 1

el Ity

We conclude, asinCase I, 1/n + 1/2n+1)2>1/2 + 1/3. This
reduces to 10n% - 13n—6 < 0. It follows that n = 1. But this is not
admissible since n = 1 gives f = 1. We do not have any solution
in this case.

1
-+
n

Using the relations between zeros and coefficients of a polyno-
mial, we obtain

p+q+r=3p, pgq+qr+rp= 3q2, pqr=r3.
The last relation shows that either r = 0 or pg = r2. In the first
case the other two relations give ¢ = 2p and pg = 3¢*. This
would force p(2p) = 3(2p)2 and hence p = 0. This in tumn leads
to g = 0 and we have the desired result.

If pg = r?, we obtain
q+r=2p, r*+gqr+rp=3¢.

Multiplying the first relation here by r and using thus obtained
relation in the second , we get 3pr = 3¢° and hence pr = ¢%. This
with pg = P gives ¢> = . Thus eitherg = rorg* + gr + P = 0.
In the latter case, we get 0 = g2 + gr + r2 = pr + gr + pq = 3¢*
and hence g = 0. But then pg = r* shows that r = 0 and hence
p = 0. Otherwise g = rand p + g+ r = 3p would give 2q = 2p
so that r = g = p. In all cases we obtain p =g =r.
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48.

49.

By looking at the first few values of a,, we guess that
a,,=(n—l)2+| =n?-2n+2.
We prove this by induction on n. In fact,

Qnyl = 2ap—Qp-) +2
= 2(n-1P2+1]-[(n=-2%+1]+2
= 2n2—4n+4—(n2—4n+5)+2
= nt+1.

Now we have,

An@mi1 = [(m=1)2 + 1][m* + 1]
= mz(m—l)2+m2+(m—l)2+l
= [mm-1)+1)%+1

Am2_m+2-

Let a, 8, be the roots of the given cubic x> — ax + b = 0, where
a > 0 and b > 0. We have then

a+B+y=0
af + By +ya=-a . (*)
afy = -b.

From the last of these equations, we see that either all the roots
are negative or two are positive and one negative. However the
second equation in (*) shows that all three cannot be negative. So
two of e, B,y are positive and the remaining root is negative. The
first equation in (*) implies that the negative root is numerically
larger than the other two positive roots. Hence we may assume
that y < 0 < @ < 8 where |a] < |B] < |yl

We have

b-aa = -afy+a(aB+ By +ya)
az(,B+y) = -a' <0.
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Since a is positive, we get b/a < a proving the first inequality.

Again, we have

3b —2aa = -3afy+2a(af + Py + ya)
= —-afy+ 202ﬁ + 202)/
= af2a(B +7y) - By]
= a[-2B+y)* - By] (since @ = —(B+7))
= —a(2B? + 5By +27%)
= —a(2B+7y)B+2y)
= -a-a)y-oa)

Observe that —a < 0,8 > a,y —a < 0. Hence 3b - 2aa is
nonnegative. This proves the second inequality, @ < 3b/2a.

Since A is a root of the equation x* + ax? + bx + ¢ = 0, we have
A= —ad’ -bi-c
This implies that

A= —ad-bA -ca
= (1I- a)t + (a - b),l2 +(b-c)d+c

where we have used again
~A—al -ba-c=0.
Suppose |4] > 1. Then we obtain

14* (1 =a)AP +@=b)AP + (b - ) + ¢

(1 =a)AP +(a- b + b - ) + c|a)
A

IN A

IA

This shows that |4} < 1. Hence the only possibility in this case is
|4l = 1. We conclude that |1] < 1 is always true.
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3.3 Geometry

51. First assume that in the triangle ABC, A = 2B. Produce CA to D
such that AD = AB. Join BD.

Figure 1

By construction, it is clear that ABD is an isosceles tnangle and
SO

LADB = (ABD.

But
(ADB + (tABD = (BAC
(the external angle)

Hence

LADB = (ABD = % = B.
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In triangles ABC and BDC we have /ABC = (BDC and /C is
common. So AABC is similar to ABDC. Therefore,

AC _ BC
BC DC’
It follows that
a® = b(b + ¢).

Now we prove the converse. Assume that a? = b(b + c). We refer
to the same figure. As before, in the isosceles triangle ABD, we
have

LABD = (ADB.

So each of these angles is equal to half of their sum which is A.
Thus, in particular,

(ADB = '12. (1)

On the other hand, in triangles ACB and BCD, we have, as a con-
sequence of the assumption a® = b(b + c),

AC BC

BC ~ DC’
and <C is common.

So the two triangles are similar and
(CDB = (CBA = B. (2)
From (1) and (2), it follows that B = A/2, as desired.

Aliter: We may use the Sine rule for a triangle to dispose of both
the implications simultaneously.

A=2B < A-B=8B
< sin(A-B)=sinB
< sin(A - B)sin(A + B) =sinBsinC
e sin’A —sin’ B=sinBsinC
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& (2RsinA)? - (2Rsin B)? = (2Rsin B)(2R sin C).
= a’-b*=bc
< a’=bb+0).

52. Join PQ, BZ and AX (see figure 2).

Figure 2

In circle C,, we have £ZBP = (ZQP; and in circle C;, we have
(PQX = (PAX. Thus, we obtain /ZZBA = (BAX. (So BZ is
parallel to AX.) The triangles AXY and BZY are then congruent,
because by hypothesis AY = YB and angles AYX and YAX are
respectively equal to BYZ and YBZ. This congruence gives us
XY =ZY, which is what we want.

Aliter: We use a standard property of intersecting chords of a
circle. If AB and CD are two chords of a circle intersecting at O
either internally or externally, then AO - OB = CO - OD.

In the figure, AP and XQ are two chords of the circle C), inter-
secting externally at Y. So

AY - YP=XY-YQ (1)

Similarly, BP and QZ are two chords of the circle C; intersecting
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at externally at Y. So

YP-YB=YZ-YQ. (2)

The left hand side expressions of (1) and (2) are equal because it
is given that AY = YB. Therefore the right-hand expressions are

equal. This give, on canceling the factor YQ, the desired relation
XY =YZ.

Join OP and produce it to meet CD in L. We see that it suffices to
prove that PL is perpendicular to CD, for in that case H would lie
on the altitude PL implying that O, P, H are collinear.

Figure 3

Since ABCD is a cyclic quadnlateral, we have /PDL = /PAB.
But O is the circumcentre of tnangle APB. So /PAB = %LPOB.
If OM is the perpendicular bisector of BP, then

%4POB = (POM = (90° - LOPM =90° - (DPL.
Putting these results together, we get ZPDL = 90° — /DPL. Thus

(PLD = 180° — (LPDL + (DPL) = 90°; i.e., PL is perpendicular
to CD.
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54. We shall show that the locus of all such points is the union of the
circumcircle and the orthocentre of the triangle ABC.

Let P be any point in the cone determined by two sides, say, BA
and BC. Using the sine rule in the triangles PAC and PBC, we get

LCAP = aor 180° - a.
Similarly, using the triangles CAP and BAP, we also get
(ACP =B or 180°-5.

Consider the case ZCAP = @ and ZACP = 180° - .

Figure 4a

Here we get,
(APC =180° - (@ + 180° - B) =B - .
Again the triangles BPC and BPA give
(BAP = (BCP or (BAP =180°- (BCP.

If ZBAP = (BCP = y, then the sum of the angles of the quadrilat-
eral is equal to 28+ 2y. This implies that 8+y = 180°. Since § and
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¥ are angles of a triangle, this is impossible. If ZBAP = 180° —
(BCP = 180° -1y, then we get —28+360° = 180°. Hence 8 = 90°.
This forces that ZPCA = 90° and AP is a diameter of the circle
through A, B, C and P, i.e., P is on the circumcircle of ABC. Sim-
ilarly, we can dispose off the case ZCAP = 180° — o, ZACP = .
Finally consider the case, ZCAP = 180° —a and ZACP = 180° -8.
Considering the triangle ACP, we see that

LAPC = 180° - LABC.

Similarly, the case ZCAP = a, /ACP = B gives that ZAPC and
LABC are supplementary angles. Thus, A, B,C and P are con-
cyclic.

On the other hand, suppose P is in the cone determined by the
lines, say, CB and AB extended. Since

LPBC + (PAC = (PBA + (tPCA = 180°,

it follows that ZABC and /APC are supplementary angles. Thus,
triangles ABC and APC, and hence triangles ABC and BPC, have
the same circumradii. Now sine rule gives

LCPB =B or 180° - B, LAPB = y or 180° —y.

Also, if ZBAP = a, then /BCP = a or 180° — a. Consider the
case
LCPB =p,.APB = 180° — y and /BCP = a.

Then
LAPC =B+ 180 -7y, LPAC+ (PCA=8+Y+ 2

and hence B+ +2a = y - B or @ + 3 = 0 which is impossible. If
(BCP = 180° - a, then we have

LAPC =B+ 180 -y, (PAC + (PCA =+ 7y + 180.

Then we would have,

Yy-B=B8+y+180
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which is impossible. Similarly we can dispose off the cases
(CPB = 180° - B, LAPB =7y, (BCP =a or 180° - a.
Finally if
(CPB =8, LAPB =y, (BCP = 180° - a,
then again we get

LAPC =B+, tPAC + (PCA =180° + B+ .

This forces 2(8 + ) = 0 which is impossible. We conclude that
the only possibility is

LAPB =v,/CPB =B and /BCP = a.
In this case, we get
(APC =B8+y,.PAC + (PCA =20+ +.

This gives us
a=90°-(B+7).

Thus 8+ @ = 90° —y and @ + ¥y = 90° — 8. These imply that AP
is perpendicular to CB and CP is perpendicular to AB. Hence P
is the orthocentre.

Similarly we can consider other regions determined by BA and
CA or BC and AC.

Finally if P is a point inside the triangle, we can show that P is
the orthocentre of the triangle ABC in the similar way.

Thus if P is any point satisfying the hypothesis, then either P is the
orthocentre of the triangle ABC or P must be on the circumcircle
of the triangle ABC.

Aliter:

We need to know the following facts about three equal circles
intersecting in acommon point. If three congruent (that is, equal)
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circles C, C2, C3 have acommon point P and A, B, C are the other
three points of intersections, then

(a) the circumcircle of triangle ABC has the same radius as the
three circles;

and

(b) the point F is the orthocentre of triangle ABC.
A bnef proof of (a) and (b) follows:

Let X, Y,Z be the centres of the circles C;, C,, C3 respectively.
Complete the quadrilaterals PXBZ and PXCY, join AP and ZY.
Observe that PXBZ and PXCY are rthombuses and so ZB is par-
allel and equal to YC. Hence so are BC and ZY. Since AP is
perpendicular to ZY, AP is perpendicular to BC. Similarly BP
and CP are perpendicular to CA and AB respectively. Hence P is
the orthocentre of triangle ABC. This proves (b).

A

Figure 4b
To prove (a), complete the parallelogram AYCQ, which is in fact
a thombus. So AQ = CQ. It is easily seen that AZBQ is also
rhombus. So AQ = BQ. Thus Q is circumcentre of triangle AB(
and its radius (= AQ = CY) is the same as that of each of thc
three circles. Note that we can have a configuration of three equal



3.3. GEOMETRY 67

circles such that P falls outside triangle ABC, but statements (a)
and (b) are still true.

Coming to the problem, let (XYZ) denote the circle through any
three non collinear points X, Y,Z. It is given that three equal cir-
cles pass through P. Hence by (a) above, the four circles (PAB),
(PBC), (PCA) and (ABC) are congruent to one another. Observe
that either the three circles (PAB), (PBC), (PCA) coincide [and
hence coincide with (ABC)] or the three circles are all distinct
passing through the point P. Thus either P is on the circumcircle
of ABC or P is the orthocentre of ABC.

55. Let K, L, M be the feet of perpendiculars from A to CD, BD and
BC respectively. (Note that one fout is outside the circle in gen-
eral.)

We have AL = x,AM = y,AK = z. Let § = LADB = (ACB,
y = LABC = (tADK, 6 = tABD = (ACD.

Figure 5

Now

8C CD BM + MC CK - DK
+

— e cmm—

y Z \¢ 7
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BM MC CK DK
+ + -

y y b4 b4

= coty+cotf+cotdé—coty

= cotB+cotd

DL BL

= — + ~ (from triangles ADL and ABL.)

BD
D

Thus we have the desired relation.

56. We denote areas of triangles ABC, quadrilaterals ABCD, etc. by
[ABC), [ABCD] etc. Join PQ and draw one of the diagonals, say
BD. We use the fact that the median of a triangle bisects its arci
(Why?).

Figure 6a

From triangles DAB (with median DQ) and BCD (with median
BP), we have

[ADQ] = [BDQ] and [BPC] = [BPD].
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Adding, we have

[ADQ] + [BPC] = [BDQ] + [BPD]
= [BPDQ] = [BPQ] + [DPQ]
= [APQ] +[CPQ],

since PQ is a median of both the triangles APB and CQD. Writing
in terms of smaller areas, we have

[AXQ] + [AXD] + [BYC] + [PYC]

= [AXQ] + [PXQ] + [CPY] + [QPY].
On cancellation, this yields, [ADX] + (BCY] = [PXQY].
If ABCD is a concave quadrilateral and the points P, Q, X, Y are
located as in the problem (see figure 6b), then by a similar argu-
ment, we arrive at the relation |[ADX] - [BCY]| = [PXQY], where

the left hand side denotes the modulus of the difference of areas.
The proof is left to the reader.

Figure 6b

%7. We use the fact that the areas of two triangles having the same
height are in the ratio of their bases. We also use some simple
properties of equal fractions.
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Specifically. if a/b = «¢/d, then each fraction is also equal to
(a+ ¢)/(b+d)as well as (u - ¢)/(b - d).

Figure 7

Now
[ACF]) _ AF _ [APF]

(BCF] = FB [BPF)

So
AF [ACF])-[APF) _[ACP]

FB ~ [BCF)-[BPF) ~ [BCP)

Similarly from

(1)

[ABE] _ AE _ [APE)
[CBE] EC [CPE]

one obtains

AE _ [ABE] - [APE] _ [ABP)
EC ~ [CBE] - [CPE] ~ [CBP)

(2)

From (1) and (2), by addition, we get

AF | AE _ [ACP] + |ABP)
FB EC [BCP]

(3)
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Again,
AP _ [ABP] _[CAP) _[ABP] +[ACP]
PD [DBP) [DCP) [BCP)
From (3) and (4), we have the desired result.

4

Aliter: (Vineet Kahlon) Applying Ceva’s theorem to the Cevians
AD, BE, CF which are concurrent at P, we have

AF BD CE _
FB DC EA
Therefore,
AE _AF BD
EC FB DC’
Hence

AF+AE=AF( +BD)=AF.BC. )
FB AC FB DC/) FB DC
Now applying Menelaus’ Theorem to triangle ABD, whose sides
are cut by the line FPC, we have
AF BC DP _
FB DC PA

+1.

Consequently,
AF BC AP

FB DC ~PD’
Comparing (1) and (2), we have the desired relation.

(2)

. Let A, B be the centres of the circles with radii a and b respectively

and touching externally at L. For the problem to make sense,
obviously we have to take a direct common tangent(PQ) and not
the common tangent at L (justify!). Let C be the centre of the
circle with radius ¢ touching these two circles externally at M and
N and a direct common tangent PQ at R.

First we consider the two circles with centres A and C and evalu-
ate PR (in terms of a and ¢). Note that PR is also the projection
of AC on the common tangent.

If we draw CK parallel to RP to meet AP in K, then clearly CKPR
is a rectangle and
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Figure 8

PR = CK?=AC? - AK?
= (AM + MC)?* - (AP - KP)?
= (a+c)*-(AP-CR)?
= (a+¢) - (a-c)? =dac.
Therefore PR = 2 \ac.

But then, we can apply the same argument to the other two pairs of
circles namely those with centres B and C and those with centres
A and B and obtain the relations

RO =2Vbc and PQ =2 +ab.
But PQ = PR + RQ. Thus

2 Vab = 2 Vac + 2 Vbe.
Dividing through by 2 vVabc, we get
1 1 1
= + ,
Ve Vb Va

which is what we wanted.
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59.

60.

In the figure below h,, hy, m, are given by AK, BL,AM respec-
tively. Draw MT parallel to BL meeting AC in T. Then as MT
is parallel to BL in triangle BLC, we get MT = $BL = 3hj,. This
enables us to construct triangle AKM and AMT. We can then
complete the triangle ABC.

A

B kK M ¢

Figure 9

The construction is as follows: First construct triangle AKM from
the measurements AK = h,,AM = m, and AKM = 90°. With AM
as a diameter draw a semicircle outwardly and with M as centrc
draw an arc of radius %hb to cut the semicircle at 7. Join AT and
produce AT to meet KM produced at C. Choose a point Bon MK
such that BM = MC. Join AB. Then ABC is the required triangle.

First we analyze the problem. Suppose we have located points
B and C such that triangle ABC has the given perimeter, say 2s.
If the ex-circle opposite A touches the rays AB and AC at X and
Y, we know that AX = AY = s. This gives us a method of con-
struction as follows: First locate points X and Y on AP and AQ
respectively such that AX = AY = 5. Draw the perpendiculars
to AP and AQ at X and Y respectively to meet at O. With O as
centre and OX (or OY) as radius draw a circle. Draw a tangent
from L to the circle to meet the rays AP and AQ in B and C re-
spectively. (There are two tangents from L to the circle; choose
the one nearer to A.) Then ABC is the required triangle.
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A

Figure 10
61. Join /D and Al. We first show that triangles BDG and BIA are

similar. We have
(DBG = g = /IBA. (1)

Figure 11
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Further ACDE is isosceles, because CD = CE. So

LCDE = (CED =90° -%.

Therefore
o o, C
(BDG = 180° - (CDE =90° + 3
Also
(BIA = 180° - LABI - (BAI
B A C
= 180° -==-==90 + —.
7720 +3
Thus,
(BDG = (BIA. (2)
From (1) and (2), it follows that, ABDG is similar to ABIA. There-
fore
BD BG
Bl ~ BA’

This fact along with the relation /DBl = (GBA(= B/2) implies
that tniangles DBI and GBA are similar. Consequently, /BDI =
(BGA. But £BDI = 90°. So £BGA = 90°. That is, BG is perpen-
dicular to AG.

Aliter:

Join [E. We show that /GEA is a cyclic quadrilateral. As in the
previous method,
C

LCED = ,('DE =90° - 3

Therefore

LAEG = 180° — (tDEC = 180" - (90° - g) =90° + %

Also

LAIG = (ABl + (BAl = — +

ST
N>
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So, 4
— = 180°.
2

LAEG+LAIG=90°+%+§+
This implies that /GEA is a cyclic quadrilateral. So
LAGI = (AEI =90°.
That is AG is perpendicular to G/, as required.

Since PXAY is a parallelogram, we have PX is parallel to AY. As
AY is perpendicular to the tangent AB, it follows that PX is also
perpendicular to AB. Since AB is a chord of the circle with centie
X we conclude that PX is in fact the perpendicular bisector of A#!

Figure 12

Similarly, PY is the perpendicular bisector of AC. Thus the pci
pendicular bisectors of two sides, AB and AC, meet in P, consc
quently P is the circumcentre of triangle ABC.

From the relation BI*> = BX - BA we see that B/ is a tangent to the
circle passing through A, X, I at /. Hence

(BIX = (BAIl = % (h

[Alternatively, one observes tat in triangles B/X and BAI, £IBN
is common and B//BX = BA/BI. Consequently the two trianglcs
are similar, implying (1).]
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64.

Figure 13

Similarly, from the relation CI*> = CY - CA we obtain

A
LCIY = (CAl = -?: (2)
It is known that
LBIC =90° + % 3)

From (1), (2), (3) and the fact that X, /, Y are collinear, we obtain
A A s A o
§+5+(90 + 2)_180 .

Solving we get A = 60°.

Let A/ meet BC in K. Join IS. We do some angle-chasing now.
Since AK is parallel to ST, we have

(STB = (AKB = (KCA + tKAC =C + %
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BI

B T K

Figure 14

So

(STI =90° - (STB = 90° —(C+ -';-)

But £TS! = (STI since SIT is an isosceles triangle. Therefore

LC'ST =90° — (TSI =C+ %

In the quadrilateral BTSC”.

(SC'B = 360° - (LC'BT + (BTS + (TSC')
- 360°—(B+C+%+C+%)
360° —(A+ B+C+C) = 180° - C

Hence
LAC'B' = 180° - /SC'B

= 180" - (180° - C) = C.

Similarly, ZAB'C’ = B. Thus it follows that triangles AB(" and
AB C are similar.
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65. From the given relation, we have

A1A2-A1A3 + A)Ax - A 1Ay = A 1Ay - A A, .
As
o ........................
Aqg
Az
Az
S
A, T
AI
Figure 15

Also in the cyclic quadiilateral AjA3A4As, we have, by Ptolemy’s
theorem,

AgAs - AjA3 + A3A4 - A1As = AzAs - A A, (2)

Since A|Aj...A, is a regular polygon, we have
A1Ay = A4As, A\Ay = A3Ag, A1A = AjAs.
Comparing (1) and (2), we have
AlAy = A\As.

Since the two diagonals A|A, and A)As are equal, it follows that
there must be the same number of vertices between A; and A4 as
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between A| and As. That is the polygon must be 7-sided, that is
n=7.

Aliter:

If O is the centre of the circle in which A}A,.....A, is inscribed
and 6 is the angle which each side of the polygon subtends at O
then using the relation

1 | 1
= +
AIAZ AIA3 A|A4

obtain an equation in 8. Solve the equation to get = Z. This
means n = 7.

66. Let K,L, M be the points of contact of the semicircle with the
sides BC,CD, DA respectively. Join OK, OL,OM, OC and OD
where O is the centre of the circle as well as the midpoint of AB.

D L C

O

Figure 16

In the night angled tnangles AOM and BOK, we have AO = BO
and OM = OK. Hence these two triangles are congruent. Thus

LAOM = (BOK = a, tDOM = (DOL = B and

LCOL = (COK = .
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67.

Adding up the angles formed at O, we obtain 2a + 28 + 2y = 180°
andsoa +f+ 7y =90°.

In triangles AOD and BCO, we have
LOAD = 90° - LAOM = 90° - q;

and
LCBO =90° - tKOB = 90° - a.
Similarly
LAOD = a+ B =90° -y,
and

LBCO = 90° - LCOK = 90° - y.

Therefore, triangle AOD is similar to triangle BCO.

Consequently
AO BC
AD ~ BO
So
AD -BC = AO - BO = %ABz.
That is

AB? = 4AD - BC.

Assume that DE = DF. First we find a suitable expression for
DF using the cyclic quadrilateral BDPF. Observe that BP is a
diameter of the circumscribing circle. By the sine rule (applied to
triangle DBF), we have

DF : : :
SnZFBD - 2(radius of the circumcircle of triangle DBF)
That 1s, DF
—— = BP,
sin B
or
DF = BPsin B

Similarly DE = CPsin C.
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Figure 17

Since DE = DF, we have
BP _ sinC ¢
PC ~ sinB b

a constant. Thus for DE = DF, we should have that BP : PC is
constant ratio, ¢ : b. But we know that the locus of such a point 7’
1s a circle. Thus the locus of P(for triangle DEF to be isosceles)
is the union of three arcs of circles that lie in the interior of the
triangle. These three circles must have a common point(becausc
DE = DF and FE = FD implies EF = ED) and this is the only
point for which triangle DEF is equilateral.

Note

[The circle corresponding to DE = DF can be obtained as fol-
lows: Divide BC internally and externally in the ratio ¢ : b say at
K and I respectively. Draw a circle with KL as a diameter. This
i1s then the required circle, called the Appolonius circle. |

l.et K. L. M be the centres of the three circles of equal radii, meet.
Ing 1n a common point O, and pairwise touching some side of the
tniangle ABC in which the lie. Since the three circles have equal
radil, we see that O 1s equidistant from the points K. [.. M and so i«
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the circumcentre of the tnangle KLM. Also for the same reason,
the sides of the tnangle KLM are parallel to the corresponding
sides of the triangle ABC. (For instance, KL is parallel to AB, as
K and L are equidistant from AB.)

Figure 18

Further AK, BL,CM are the bisectors of angles A, B, C of triangle
ABC. So not only they meet in /, the incentre of the triangle
ABC but also K1, LI, MI are the bisectors of the angles of triangle
KLM, implying that / is also the incentre of triangle KLM.

It follows, from the relation

IK _IL _IM

IA IBIC’
that tnnangle KLM is homothetic to triangle ABC with respect to
1, the centre of homothety. (This simply means that tniangle ABC
is a dilation (or an enlargement) of triangle KLM as seen from /).

A property of homothety is that the centre of homothety and any
two corresponding points of the homothetic figures are collinear.
Here, in particular, / and the circuncentres of tnangles KLM and
ABC have to be collinear. This is precisely what was to be proved.
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69. Let S, touch the circle S at K, the rays AB and AC at M and L
respectively. We have PL = PM = PK = r| (as P is the centre
of S,)and R = OK = OP + r;, where R is the circumradius of
triangle ABC (Note that O, the midpoint of the hypotenuse BC is
the circumcentre of triangle ABC.) From the figure, it is clear that
AMPL is a square with side r,.

Figure 19

So

BM =AB-AM =c-nr; and LC=AC-AL=b-r,.
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Therefore from triangles BMP and CLP, we have
PB* = PM* + MB* =1} + (¢ - )’

and
PC*=PL* +LC* =ri +(b- 1)

Applying Appolonius’ theorem to triangle PBC, in which PO is a
median, we get

PB* + PC* = 2(PO* + CO?).
That 1s,
r’; +(c‘—-r|)2 +r‘|°‘ + (b - r|)2 = 2[(R - r|)2 + Rz].

Using the fact that R = «/2 and «® = b* + 2, if we solve the above
equation for r|, we obtain ry = b + ¢ - a.

Similarly, working with S>» we obtain ra = b+ ¢ + .

Hence
rnrp = (b+c-a)b+c+a)
= b+l -a=b>+c*+2bc -d?
|
= 2bC = 4 (Eb(‘)
= 4[ABC).
Aliter

Choose A as the origin, AB and AC as the x-axis and y-axis re-
spectively. Let B = (b,0) and C = (0,c¢). Then the circumcen-
tre of triangle ABC which is at the midpoint of BC is given by
0=(%%)

Any circle I" which touches the positive x-axis and positive y-axis
will have its centre at (r, r), where r is the radius of the circle.
Now the equation to the circumcircle S of triangle ABC is

SHREHEC



86

CHAPTER 3. SOLUTIONS

The equation to I" is (x—r)? +(y-r)? = r2. If the two circles S and
I" touch each other either internally (giving I' = §) or externally
(giving I' = §7), then we have

(=2 = (-2 (-5

giving r = b + ¢ £ a. Here b + ¢ — a is the radius of the circle S,
namely, r; and b + ¢ + a is that of S 7, namely rs.

Hence rir, = (b + ¢ — a)(b + ¢ + a) = 4 (area ABC), as before.

70. Let O be the centre of the circle and P, Q the feet of perpendiculars

from O to AC and BD. Clearly OPEQ is arectangle.

Figure 20

Now

EA%> + EC* = (EP + PA)® +(PC - PE)?
= EP*+PA2+2EP-PA +
PC? + PE* - 2PC - PE
= 2(PA% + PE?), because PA = PC.
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Similarly EB? + ED? = 2(QD? + QE?).

Therefore

EA?2 + EB?2 + EC* + ED* = 2(PA? + PE?*) + 2(QD? + QE?)
= 2(PA%? + 0Q%) + 2QD* + OP?)
= 2(PA% + OP?) + 2(QD* + 00?)
= 2(0A? + OD?*) = 4R%.

71. We have (see figure) PQ-OR > BQ-QC, OR-RS > CR-RD, etc.

D R C

1% £ —0Q

KY

o
Q
O

A P B
Figure 21
Therfore,
(PQ+QOR+RS +SP* = PQ*+---+
2PQ-QOR +---
> (PB*+BQ*)+---+
+2BQ - QC + ---

= (PA + PB)? + (BQ + QC)’
+(CR + RD)? + (DS + SA)®

= AB*+ BC? + CD* + DA’

= AC? + BD? = 2AC?.

Hence PO + OR + RS +SP > V2 AC.
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72. Draw CQ such that /PCQ = 60° and CP = CQ.

A

Q

Figure 22

Then APCQ is equilateral and therefore, PQ = PC. Also, in tri
angles APC and BQC:

AC = BC; PC =QC and (ACP =60° - LPCB = (BCQ.

The triangles are congruent. Therefore, AP = BQ. Substituting
thesc in AP*> = BP?> + CP*, we obtain

BQ* = BP* + PQ’,
which implies £ZBPQ = 90° Therefore we obtain

(BPC = (BPQ + (QPC =90 + 60° = 150°.

73. Draw a line [ parallel to BC through A and reflect AC in this line
to get AD. Let CD intersect [ in P. Join BD.
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D
D)
A [
[P
b |
B 0] C

Figure 23

Observe that CP = PD = AQ = h,. AQ being the altitude through
A. We have

b+c=AC+AB=AD+AB > BD = JCD? + CB>

= \/4113 +a?,

which yields the result. Equality occurs if and only if B,A, D are
collinear, i.e., ifand only if AD = AB (as AP is parallel to BC and
bisects DC) and this is equivalent to AC = BC.

Alternatively, the given inequality is equivalent to

16A°
—.

(b + (‘)2 —d > 411‘2, =
a

where A is the area of the triangle ABC. Using the identity

16A2 = [(b+ ) - [ = (b~ )]
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we see that the inequality to be proved is a® — (b - ¢)? < a® (heic
we use a < b+ ¢) which is true. Observe that equality holds if and
only if b = c.

More generally, let [BPF] = u,[BPC] = v and [CPE = w. Join
AP. Let [AFP] = xand [AEP] = y.

Figure 24

Using the triangles AFC and BFC, we get
x _FP u
y+w PC v

This gives the equation

VX — Uy = uw.

Again using the triangles AEB and CEB we get another equation
WX — VY = —uw.

Solving these equations, we obtain

uw(u + v) _uw(w + V)

;] -
V2 — uw v — uw

Hence we obtain
uw(u + 2v + w)

X+y = 5
v — uw

Putting the values v = 4,v = 8, w = |, we get [AFPE] = 143.
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75. Let AB = a,BC = b,CD = ¢, DA = d. We are given that abcd >
4. Using Ptolemy’s theorem and the fact that each diagonal cannot
exceed the diameter of the circle we get ac + bd = AC - BD < 4.
But an application of AM-GM inequality gives

ac + bd > 2 Vabed >2V4 = 4.

We conclude that ac + bd = 4. This forces AC - BD = 4 giving
AC = BD = 2. Each of AC and BD is thus a diameter. This
implies that ABCD is a rectangle. Note that

(ac - bd)? = (ac + bd)* - d4abcd < 16 -16 =0

and hence ac = bd = 2. Thus we geta = ¢ = yac = V2 and
similarly b = d = V2. It now follows that ABCD is a square.
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Combinatorics

For 0 < j <2, let A, denote the set of all integers between 1 and
300 which leave remainder j when divided by 3. Then |A;| = 100
for0 < j < 2. If q,b,c is a 3-element subset of the given sc
S =1,2,..,300, then 3 divides a + b + c if and only if

(1) all a,b,c are in Ag orin A; orin A;,

(11) one of the a, b, ¢ is in Ag, another in A, and the third one n
As.

The number of 3-element subsets of A;,0 < j < 2is ('20) Fou
each choice of a in Ag,b in A and c in A,, we get a 3-element
subset such that 3 divides a + b + ¢. Thus the total number of
3-element subsets {a, b, ¢} such 3 divides a + b + c is equal to

100
3( ; )+ 100® = 1495100.

We count the 3-element subsets {a, b, ¢} such that 4 does not dividc
abc. This is possible if and only if either all the three are odd
numbers or any two of them are odd and the other is an even
number not divisible by 4. There are 10 odd numbers in the sct
{1,2,3,...,20} and 5 even numbers not divisible by 4. Thus the
number of 3-element subsets {a, b, ¢} such that 4 does not dividc

abc is equal to ('30) + 5('30) = 345. The number of 3-element
subsets is (2{)) = 1140. Thus the number of 3-element subsels

such that the product of these elements is divisible by 4 is equal
to 1140 - 345 = 795.

Since each A; contains 4 elements, totally we get 24 elements
of which some may be repeated. But each element is repeated -
times as each element belongs to exactly 4 of the A’s. Hence there
are 24 /6 = 6 distinct elements in S.

Since § = By U B U By U ...U B,, and each B, consists of
elements, this union accounts for 2n elements. But each element
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79.

80.

81.

82.

appears exactly 3 times. Thus the number of distinct elements in
S is also equal to 2n/3.

Therefore 2n/3 = 6 which gives n = 9.

This makes repeated use of the pigeon-hole principle. As there
are 65 balls and two boxes, one of the boxes must contain at least
33 balls (as otherwise the total number balls would be < 32 +
32 = 64). Consider that box (i.e., the one containing > 33 balls).
We have more than 33 balls and four colours (white, black, red,
yellow) and hence there must be at least 9 balls of the same colour
in the box. There are at most 4 different sizes available for these
9 balls of the same colour. For if there were 5 (or more) different
sizes, then the collection of five five balls, all of different sizes
would not satisfy the given property. Thus among these 9 balls
(of the same colour and in the same box) there must be at least 3
balls of the same size.

If both the urns have the same number of balls, then we can empty
both the umns in one operation. Else, we remove the same number
of balls from each of the urns so that one of the ums contains
exactly one ball. (If m and n denote the number of balls in the
urns, and say m > n, then take out n— | balls from each.) We now
double the number of balls of the um which contains only one ball
and remove one ball from each of the um. This process decreases
the number of balls in the other um by 1. Continuing this way we
reach a stage when both the urns contain one ball each whence we
can empty the urns removing one ball from each of the two urns.

Pair off the elements of the set {1,11,21,31....541, 551} as fol-
lows: {{1,551}.{11,541},...{271,281}}. There are 28 such pairs
and they account for all the numbers in the original set. So if the
subset A has more than 28 elements, then A should contain both
the elements of some pair, but then there is a contradiction since
each pair above has the property that the two elements in the pair
add up to 552. Thus A cannot have more 28 elements.

For each n, 0 < n < 10, let A, denote the set of integers between
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1 to 100 which leave remainder n after division by 11. Then A,
consists of 10 elements and A,, for n # 1 consists of 9 elements
each. If {a, b} is any two-element subset of {1, 2,3,.....100}, thc
11 divides a + b if and only if either both a and b are in Ag or elsc
aisinAgand bisin A -, forsome k,1 <k < 10.

Consider any set B with 48 elements. If B contains two elements
from the set Ag, then we are done. Similarly if B contains an
element from A; and another from A};_x,1 < k < 10 then again,
their sum is divisible by 11. Thus B can contain one element
from Ag, 10 from A; and 9 from the sets A; for some 4 values of
k(# 10), say ky, k3, k3, k4, no two of whichadd upto 11.

But these account only for 47 elements. Hence there must be an
element which is either in Ajg or in Ajj;,1 < j < 4. Thus we
can always find an element a in A; and b in Ay,_;. Here a, b arc
in B and 11 divides a + b.

We shall look at the problem from a general viewpoint. For any
positive integer n, let T, denote the number of permutations of
(Py, Py, P3,....,P,)of 1,2,3,...,nsuch that foreachk,1 < k < n,
(Py, Py, P3,...,P,) is not a pennutation of 1,2,...,k. We shall
obtain a formula for T,, which expresses T, in terms of T, T»,

T,-1 (n > 1). (Such arelation is called a recurrence relation

forT,.)

Consider any permutation (P, P, P3,...,Py)of 1,2,...,n. There
is always a least positive integer k such that (Py, P, P3,...P;)
is a permutation of 1,2,...,k. In fact K may be any integer in
the set {1,2,...,n}; and those permutations for which k = n arc
exactly the ones we wish to count. The number of permutations of
(1,2,...,n) for all of which £ is the least positive integer satisfying
the above property is Ty - (n — k)!, by our definition of T,. The
second factor corresponds to the permutations of k + 1,k + 2, ..., n
which fill up the remaining (n — k) places. Since there are n'
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permutations in all, we obtain

n! = ZTk-(n—k)!
k-1
= Th-m=-1N+Tr-n=-2"+...+Tpy-1'+T,-0!

Hence
T,,=n!—T|-(n—.l)!—Tz-(n-Z)!---- -1 1.
Clearly

T, = 1

T, = 20-T,-1'=2-1=1

Ty = 31-T,-"=T-11=6-2-1=3

Te = 4&'=T,-1'=Tp-2'=T3- 1!
= 24-6-2-3=13.

Ts = S!'=T,-4'=Ty-31=T3-201 =T, - 1!
= 120-24-6-6-13=7I

Te = 6'—T)-5'—=Ty 41 —-T3-31-T4-21=Ts- !
= 720-120-24-18-26- 71 = 461.

Thus the required number is 461.

84. Since none of the 17 integers has a prime factor exceeding 10,
all of them have the form 2932574, where a, b, c and d are non-
negative integers. The product two such numbers, say 2¢3%5¢7¢
and 293Y'5¢ 74 js 29+a’ 3b+b se+c"7d+d Thyusifa +a’,b +b',c +
¢’ and d + d’ are all even then the product would be a square.
For this to happen the 4-tuples (a, b, ¢,d) and (a’, b’, ¢’, d’) should
have the parity (that is to say a and a’ should both be odd or both
even,b and b’ should be both odd or both even etc.). Since each
of the numbers a, b, ¢ and d can either be odd or even, the total
number of patterns of the 4-tuples (a. b, c,d) is 2* = 16. As we
have seventeen 4-tuples (a, b, c, d), each corresponding to the 17
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given numbers, it follows, by the pigeon-hole principle, that a
least two of these seventeen 4-tuples should have the same parity.
The product of the numbers corresponding to these 4-tuples will
then be a square.

a. Since A contains n + | elements of the set {1,2,3....,2n} some
two of the n + | element must be consecutive (Why ?). But then
any two consecutive integers are relatively prime and we have the
desired conclusion.

b. We give a proof by making use of the pigeon-hole principle.
Write each of the n+ 1 numbers in the form 2”-q, where ¢ is an odd
number and p a nonnegative integer. What are the possible values
of g? Since the numbers of A come from the set {1, 2,3, ...2n}, we
see that g can be any one of the n odd numbers 1,3,5,7,...2n - 1.
As there are n + |1 numbers in A, there are n + | values of 4.
Hence by the afore-mentioned principle, for some two numbers
a=2".-q and b = 2"* - g>, we must have ¢ = ¢>. Since
a # b, p) is either greater than p, or less than p>. In the former
case b divides a, while in the latter case a divides b.

Remark: Strangely, this problem can be solved by induction also.
The reader should try this method.

Any real number x can be written as tan @ for some angle a be-
tween —90° and 90°. Put x; = tana, 1 < i <7,where x;,1 <i <7
are the given real numbers. Suppose a;’s are arranged such that
a) <ar <---<aq. Then a7 — @) < 180° and hence «,,| — a; <
30° for some index i. This gives

|
0 <tan(ajs) - @) < —

\/3.
But

tana;,) —tan a,

tan(a,4+) — @) =
| +tana;, tan a,

X4l = X

| + X1 X
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88.

Thus we get
Xivl = X 1
<

0< :
I +xinxi V3

Let A,B,C,D, E, F be the six cities, all pair wise connected by
rail-way or road. We indicate the rail way by r and road by m.
Consider the roads emanating from a fixed city, say A. There are
five connections, namely AB,AC,AD, AE and AF. Since there are
only two modes of transport, by the pigeon-hole principle three of
them must belong to the same type. We may assume without loss
of generality that AB, AC, AD are rail-ways (see the figure).

F E

[ J

Figure 25

Now, if any two of the three cities B, C, D are connected by rail-
way, then those two along with A constitute three cities mutually
connected by the same mode of transport. Otherwise, all the three
cities B, C, D would be connected pairwise by road in which case
also we have the desired conclusion.

First we observe that each vertex can be present in at most 3 tri-
angles, for, having chosen a vertex, there remains 7 points from
which 3 pairs are possible. If there are 9 or more tnangles, these
account for at least 27 vertices, repetitions allowed. In that case,
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one vertex has to occur in at least 4 triangles, a contradiction.
Thus, there can be at most 8 triangles. The following examplc
shows that 8 are possible; name the points as 1,2,3,4,5,6,7,8; the
triangles are with vertices 123, 145, 167, 248, 368, 578, 256, 347.

Let us start counting 3-term G.P’s with common ratios 2, 22,
2.

The 3-term G.P.’s with common ratio 2 are
1,2,22; 2,22,23; ... 2n"2 -l on

They are (n — 1) in number. The 3-term GP’s with common ratio
22 are
1 22 24. 2 23 25. 2!!—4 2n-2 ”n

They are (n - 3) in number. Similarly we see that the 3-term GP’s
with common ratio 23 are (n — 5) in number and so on. Thus the
number of 3-term GP’s which can be formed from the sequence
1,2,22,23,...,2" is equal to

S=n-1)+n-3)+(n-5+---

Here the last term is 2 or 1 according as n is odd or even. If n is
odd, then

S = (m-D+n-3)+(n-5+---+2

n-1
= 2(|+2+3+---+ > )

n? -1
Yo

If n is even, then

S=(n—|)+(n—3)+---+l=%.

Hence the required number is (n2=1)/4 or nt/4 according as n is
odd or even.
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First. note that A has 233 elements of which 116 are even and 117
are odd. B has 42 elements of which 21 are even and 21 are odd
and A N B has 14 elements. Therefore, required number is:

n = |{(a.b) : a€eA,be B,a+b iseven}
—|{(a,b) : a€ A,be B,a = b}
= W|(a,b) : a€ A,b € B,aiseven, bisevenl}
+|{(a,b) : a€ A,b€ B,aodd, b odd }|
—{(a,b) : a€ A,be B,a=bl
= 116 x21 +117x21 -14 = 4879.

If 100 € A then we are done. So assume A C {1,2,3,...,99).
Consider the two-element subsets {1, 99}, {2,98}, {3.97}. ...,
{49,51} along with the singleton set {50). These fifty sets are
disjoint, and their union is the set {1,2,3,..., 99} and the sum
of the two numbers in cach of the two-element set is 100. The
hypothesis implies that A can contain at most one element from
each of these fifty sets and since A has fifty clements it has to
contain exactly one element from each of the fifty sets. Since
{36, 64} is one of the pairs and both 36 and 64 are squares we are
done.

Suppose A has r elements, 0 < r < n. Such an A can be chosen
in ('r') ways. For each such A, the set B must necessarily have
the remaining (n — r) elements and possibly some elements of A.
Thus, B = (X \ A) U C, where C Cc A. Hence B can be chosen
in 2" ways. Thus there are Y7, (','_)2" = (1 +2)" = 3" ways of
choosing two sets A and B satisfying the given conditions. Among
these choices, only in one case A = B(= X). and in all other
cases A # B. Since the order does not matter, we essentially have
(3" - 1)/2 pairs.

X ) 801
We start with the observation that l;o—l = 40 and hence some

term must be at least 41. If we select nineteen numbers equal to
40 and one 41, then their sum is 801 but lem 15 40 X 41 = 1640.
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If we take nineteen numbers equal to 41 and one 22, again they
add up to 801 but Icm is 4] x 22 = 902. Any other combina-
tion containing 41 as a summand will have lcm equal to 41k for
some k > 1; for observe that 41 is a prime and we cannot have a
combination having only 41 as summands.

Since x + 1 divides ax® + bx + ¢, we must have a + ¢ = b. Thus
we have to count the number of triples (a, b, c) with the condition
that a, b, c lie in the set {1,2,3,...,1999},a # canda+c = b.
If we take a < c, then for each a with | < a < 999, ¢ can take
values froma + | to 1999 — a. Thus fora = 1, ¢ runs from 2 to
1998 giving 1997 ordered pairs (a, ¢) with a < ¢; fora = 2, ¢ runs
from 3 to 1997, giving 1995 pairs (a, ¢) with a < ¢, and so on.
The number of ordered pairs (a,c) with a < ¢ and a + ¢ lying in
the set {1,2,3,..., 1999} is thus equal to

1997 + 1995 + 1993 + - .- + | = 9992,

Similarly the number of pairs (a, ¢) with ¢ < a and a + ¢ lying in
the set {1,2,3,..., 1999} is 999°. Hence the required number of
polynomials is 2 - 9992 = 1996002.

Suppose that (a, b, c) is asubset of {1,2,3,...,63} witha+b+c <
95. Then (64 —a,64 - b,64 —c) is a subset of {1,2,3,...,63} with
64 -a)+(64-b)+(64-¢c) =192-(@a@a+b+c) > 192 -
95 = 97. Conversely, if (a,b,c) is a subset of {1,2,3,...,63)
witha+ b + ¢ > 97, then (64 — a,64 - b,64 — ¢) is such that
64-a)+(64 -b)+(64—-c)=192-(a+ b+ ) <95. Thus there
is a one-one correspondence between 3-element subsets (a, b, ¢)
with a + b + ¢ < 95 and those such that a + b + ¢ > 97. Hence
the number of subsets with a + b + ¢ < 95 is equal to that with
a+ b+ c > 97 Thus the set of 3-element subsets (a, b, c) with
a+ b+ ¢ > 95 will contain those witha + b + ¢ > 97 and a few
more.

Let X be an n- element set and let B be a subset of X containiny
r elements. Thus there are (’,') choices for B. Hence there are 2’
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choices for A and 2"~ " — 1 choices for C. Thus we obtain the total
number of triples (A,B,C) suchthat A ¢ B c Cbut B # C as
2" 27(2)2"" - 1) which simplifies to 4" — 3"

Aliter: Let us denote by 0 or 1 the absence or presence of an
element of X in the sets A, B,C. For any fixed element of X,
there are only four choices to conform with A ¢ B c C, namely,
000, 001, O11,111. Thus there are 4" choices. But B = C gives
three choices, namely, 000,011,111. Hence there are 3" triples
(A, B, B). The number of triples (A,B,C) with A ¢ B ¢ C but
B # C is therefore 4" - 3".

We fill up the 3 x 3 array at the left top (shown by dots in the
adjacent figure) arbitrarily using the numbers 0, 1,2, 3. This can
be done in 4° ways. The three numbers in the first row uniquely
fix a. Similarly b, c, p, g, r are fixed uniquely (If a number n when
divided by 4 leaves a remainder R, then n + (4 — R) is divisible by
4 and 4 — R is in the set {0, 1, 2, 3}).

It is also clear that a + b+ c and p + g + r leave the same remainder
modulo 4, since both are obtained by the same set of nine numbers
adding row-wise and adding column-wise, modulo 4. Hence x is
also fixed uniquely by the nine numbers originally chosen. Thus
the number of arrays required is 4°.

Delete any n rows containing maximal number of zeros. We
claim that at most n zeros are left in the remaining »n rows. For, if
otherwise, there are at least n+ | zeros left and so there are at least
2 zeros in some row, by the Pigeonhole Principle. Since we have
deleted rows containing maximum number of zeros, each such
row must contain at least 2 zeros. Hence we would have deleted
at least 2n zeros. These along with n + 1 zeros would account for
more than 3n zeros, a contradiction to the hypothesis. This proves
our claim.

Now remove the columns (numbering not more than n) containing
the remaining zeros. By this process, we are removing all the 3n
zeros in the desired manner.
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Suppose {a, b, c,d) is a group in which a = (b + ¢ + d)/3. Then
a+ b+ c+d = 4a. Hence, if such an n exists, then 4 divides
1+2+---+4n. However this sum is 2n(4n + 1). Thus a necessary
condition for existence of such a set is that n be even.

We show that this condition is also sufficient; i.e., if n = 2k for
some k, then it is possible to partition {1,2,3,..., 8k} into groups
of 4 elements {a,b,c,d} such that a = (b + ¢ + d)/3. To this
end, divide {1,2,3,...,8k} in to groups of 8 integers such that
each group contains 8 consecutive integers. If {a + 1,a+ 2,a +
3,---,a + 8} is one such set, we can divide this set into two sets
of 4 integers each as follows:

{a+4,a+1,a+3,a+8), {a+5,a+2,a+6,a+7).

The desired partition is obtained since

a+l+a+3+a+8
3

a+4 =

and
a+2+a+6+a+7

3

(a) Let a, b, c be the sides of a triangle with a + b + ¢ = 1996, and
each being a positive integer. Thena+1,b+ 1,c+ 1 are also sides
of a triangle with perimeter 1999 because

a+5=

a<b+c = a+l<b+1)+(c+]),

and so on. Moreover (999, 999, 1) form the sides of a triangle with
perimeter 1999, which is not obtainable in the form (a + 1,b +
1,c + 1) where a, b, ¢ are the integers and the sides of a triangle
with a + b + ¢ = 1996. We conclude that f(1999) > f(1996).

(b) As in the case (a) we conclude that f(2000) > f(1997). On
the other hand, if x,y,z are the integer sides of a triangle with
x +y+2=2000, and say x =2 y > z 2 1, then we cannot have
z = |; for otherwise we would get x + y = 1999 forcing x,y
to have opposite parity so that x -y 2 | = z violating triangle
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inequality for x,y,z. Hence x > y 2 z > 1. This implies that
x-12y-122z-1>0. Wealready have x < y + z. If
x2y+2z-1,thenweseethaty+z -1 < x <y+z showing that
y+ z-1 = x. Hence we obtain 2000 = x + y + z = 2x + | which
is impossible. We conclude that x < y + z — 1. This shows that
x-1<(-1)+(z-1)and hence x- 1,y - 1,z — 1 are the sides
of a triangle with perimeter 1997. This gives f(2000) < f(1997).
Thus we obtain the desired result.
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Miscellaneous

Consider the smallest value among the 64 entries on the board.
Since it is the average of the surrounding numbers, all those num-
bers must be equal to this number as it is the smallest. This gives
some more squares with the smallest value. Continue in this way
till all the squares are covered.

For every triplet (a,b,c) in T the triplet (7 = ¢,7 - b,7 - a) is in
T and these two are distinct as 7 # 2b. Pairing off (a, b, ¢) with
(7-c,7-b,7-a) foreach (a, b,c) € T, 7 divides abc+ (7 -a)(7 -
b)(7 - o).

We begin with the observation that E and N can take the values
only in the set {0, 5}. If N = §, then there is a carry and the addi-
tion in 10’s place cannot be true. Hence N = 0, E = 5. Consider
the 1000’s place. The addition there shows that there is a carry
which must originate from 100’s place. There can be at most a
carry of 2 from 100’s place to 1000’s place. If the carry is 1, then
Ohastobe9and / = 0. Butsince Nisalready 0,/ = land O = 9
with a carry 2 from 100’s place. To account for the carry of 2, we
must have 7 > 5. Since E =5, T # 5. If T = 6, then R must be
7 or 8. ButR =7 gives X = 0and R = 8 gives X = 1, which are
impossible since N = 0 and thus T # 6.

If T = 7, then R must be from the set {5, 6, 8}. But R cannot be 5.
Now R = 6 gives X = 1 and R = 8 gives X = 3. In the last case,
F cannot be from the set {0,1,2,3,4,5,6,7,8,9}. Hence T = 8
givingR=7,X=4,F=2and§ = 3:

29786
850
850

31486
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Let S denote the set of all the 25 students in the class, X the set
of swimmers in S, Y the set of all weight-lifters and Z the set of
all cyclists. Since students in X U Y U Z all get grades B and
C and six students get grades D or E, the number of students in
XUYUZ <25-6 = 19. Now assign one point to each of the
17 cyclists, 13 swimmers and 8 weight-lifters. Thus a total of 38
points would be assigned among the students in X U Y UZ. Note
that no student can have more than 2 points as no one is all the
three. Then we should have [X U Y U Z| > 19 as otherwise 38
points cannot be accounted for. (For example if there were only
18 students in XU Y UZ the maximum number of points that could
be assigned to them is 36). Therefore |[X UY UZ| = 19 and each
student in X U Y U Z is in exactly 2 of the sets X, ¥,Z. Hence the
number of students getting grade A = 25-19-6 = 0, i.e. no
student gets A grade. Since there are 19 - 8 = 11 students who are
not weight-lifters all these 11 students must be both swimmers
and cyclists. (Similarly there are 2 who are both swimmers and
weight-lifters and 6 who are both cyclists and weight-lifters).

Suppose E is wearing a white cap. Then D is lying and hence
must be wearing a white cap. Since D and E both have white
caps, A is lying and hence he must be wearing white cap. If C is
speaking truth, then C must be having a black cap and B must be
wearing a black cap as observed by C. But then B must observe
a black cap on C. Hence B must be lying. This implies that B is
wearing a white cap which is a contradiction to C’s statement.

On the other hand if C is lying, then C must be wearing a white
cap. Thus A, C, D and E are wearing white caps which makes B’s
statement true. But then B must be wearing a black cap and this
makes C statement correct.

Thus E must be wearing a black cap. This implies that B is lying
and hence must be having a white cap. But then D 1s lying and
hence must be having a white cap since B and D have white caps.
A is not saying the truth. Hence A must also be wearing a white
cap. These together imply that C is truthful. Hence C must be
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wearing a black cap. Thus we have the following distribution:

A - white cap, B - white cap, C - black cap,
D - white cap, E - black cap.

106. The reader is expected to be familiar with the following simple
properties of bijective functions:

a. If f: A — A is a bijective function then there is a unique
bijective function g : A — A such that fog = gof = 14, the
identity function on A. The function g is called the inverse
of f and is denoted by f~'. Thus,

fof ' =14 = fof.

b. fols = f = lp0f.
c. If f and g are bijections from A to A, then so are gof and

fog.
d. If £, g, h are bijective functions from A to A and fog = foh,
theng = h.

Apply ! at left to both sides to obtain g = h.

Coming to the problem, since A has n elements, we see that there
are only finitely many (in fact, n!) bijective functions from A to A
as each bijective function f gives a permutation of {1,2,3,.. ., n}
by taking {f(1), f(2),..., f(n)}. Since f is a bijective function
from A to A, so is each of the functions in the sequence:

fof = f*, fofof = f°,... f", .

All these cannot be distinct, Since there are only finitely many
bijective functions from A to A. Hence for some two distinct pos-
itive integers m and n,m > n say, we must have

flll - fll.
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Ifn = 1, we take M = m, to obtain the result. If n > 1, multiply
both sides by (f )"}, to get f™"*! = f. Wetake M = m—-n+ 1
to get the relation

M= f.(M>1.

Note this means

M) = fG) forall ieA.

Aliter: Take any element r in the set A and consider the sequence
of elements

r, f(r), (fofXr), (fofof)r),....

obtained by applying f successively. Since A has only n elements
there must be repetitions in the above sequence. But when the first
repetition occurs, this must be r itself; for, if the above sequence
looks (for instance) like

r,a,b,c,d,e,c, ...

where the first repetition is an element ¢ other than r, this would
imply
f(b)=c and f(e) =c,

contradicting the fact that f is a bijection. Thus for some positive
integer [, > 1, we have f"(r) =r.

This is true for each rinthe set A = 1,2,...,n. By taking M to be
the lem of I}, 1, .. ., 1, we get

fMir)y=r foreach reA.

[Note: If f itself is the identity function the above proof fails
because each [, = |. But in this case we may take M to be any
integer greater than or equal to 2).

Let ABCDEF be an equiangular hexagon with side-lengths as 1,
2, 3,4, 5, 6 in some order. We may assume without loss of gen-
erality that AB = 1. Let BC = a,CD = b, DE = c, EF = d,
FA =e.
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y
¢ D
b
C
e
a
- 4
A | B !
Figure 26a

Since the sum of all the angles of a hexagon is equal to (6 — 2) »
180° = 720° it follows that each (interior) angle must be equal
to 720°/6 = 120°. Let us take A as the origin, the positive x-axis
along AB and the perpendicular at A to AB as the y-axis, as shown
in the figure. We use the vector method. If the vector is denotcl
by (x, y), we then have

AB
Cch

(1,0), BC = (acos 60°, asin 60°),
(hcos 120°, bsin 120°),
(ccos 180°, csin 180°) = (—c, 0).
(d cos 240°, d sin 240°),
(e cos 300°, e sin 300°).

This is because these vectors are inclined to the positive x-axis :t
angles 0, 60, 120°, 180°, 240°, 300° respectively.
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Since the sum of all these 6 vectors is 6, it follows that

a b d e
|+§—§—¢—5+5—0,
and
3
(a+b—d—e)£=0.
2
That is
a-b-2c-d+e+2=0, (D)
and
a+b-d-e=0. (2)

Since {a, b,c,d, e} = {2,3,4, 5,6}, in view of (2) we have

(i) {a, b} =1{2,5),{d, e} = {3,4),¢c =6,
(ii) {a, b} = |3,6l, {d,e} =1{4,5),¢ =2,
(1ii) {a,b) =1{2,6},{d, e} = {3,5}.c = 4.

[The possibility that {a,b} = {3,4},{c,d} = {2,5} in (i), for in-
stance, need not be considered separately, because we can reflect
the figure about x = 1/2 and interchange these two sets.]
Case(i):
Here (a-b)-(d-¢e) =2c-2=10.Sincea=b = +3,d-e = 1|,
this is not possible.
Case(ii):
Here

(a-b)—-(d-e)=2c-2=2.

This is satisfied by
(a.b,d,e) = (6,3,5,4).
Case (iii):

Here
(a-b)-(d-c)=2c-2=6.
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This is satisfied by
(a,b.d,e) = (6,2,3,5).
Hence we have (essentially) two different solutions:
(1,6,3,2,5,4) and (1,6,2,4,3,5).

it may be verified that (1) and (2) are both satisfied by these sets
of values.

Aliter

Figure 26b

Consider an equilateral triangle, of side 9 units. Remove from the
three comers equilateral triangles of sides 1 unit, 2 units and 3
units respectively. The remaining portion is now an equiangular
hexagon ABCDEF with sides 1,6,2,4.3,5 as required.

Let a),aa. . .., ajo denote the weights of the 10 objects in decreas-
ing order. It is given that 10 2 a; > a3 = ---a)0 2 | and that
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ay+azy+---+ayjg = 20. Foreachi, 1 <i<9,letS;=a;+---+a;.
(For example S| = a,,82 = a) + a3, etc.) Consider the 11 num-
bers 0,5,,S2,...,59,da; —ajo. Note that all these 11 numbers are
non-negative and we have 0 < a; -aj9o < 10and | < §; < 20 for
1 <i <9. Now look at the remainders when these |1 | numbers are
divided by 10. We have 10 possible remainders and 11 numbers
and hence by the pigeon-hole principle at least some two of these
11 numbers have the same remainder.

Case (i):

For some j, S ; has the remainder 0, i.e., S  is multiple of 10. But
since 1 < §; < 20 the only possibility is that S; = 10. Thus
we get a balancing by taking the two groups to be ay,...,a; and
aj+ls - - > A10-

Case(ii):

Suppose a; —ayg is a multiple of 10. But then since 0 < a) —a)g <
10 this forces a; — ajo = 0 which in turn implies that all the
weights are equal and equal to 2 as they add up to 20. In this
case taking any five weights in one group and the remaining in
the other we again get a balancing.

Case(iii):
For some j and k, say j < k, we have that S and S; have the
same remainder, i.e., Sx — S is a multiple of 10. But again since

0 <S¢ -8, <20 we should have Sx — S = 10, i.e., ax + ax-) +
---+aj+1 = 10 and we get a balancing.

Case(iv):

Suppose (a; - ajp) and S j for some j (1 < j < 9) have the same
remainder, i.e., $; — (a1 — ajo) is a multiple of 10. As in the
previous cases this implies that

S - (a1 —ayp) =10,

1e.,
ay+ay+---+a,+ap=10.
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Therefore {az,as,...,aj,ai0} and {a),aj4+1, ..., a9} balance each
other.

Thus in all cases the given 10 objects can be split into two groups
that balance each other.

Let x;, x2, X3, X4, X5, X¢, X7 and xg be the numbers written at the
comners. Then, the final sum is given by

8
Z Xi + X1 X2X3X4 + X5X6X7X8 + X| Xq4X5X8

i=1
+X2X3X6X7 + X] X2X5X6 + X3X4X7X8.

Because there are fourteen terms in the above sum and each of the
terms is +1 or —1, the sum will be zero only if some seven terms
are +1 each and the remaining seven terms are -1 each.

But, the product of the fourteen terms is
4 _ 4 _
(x1x2x3x3X5x6X7X8)" = (x1)" = +1.

Therefore, it is impossible to have an odd number of —1’s in the
above sum.

We conclude that the desired arrangement is not possible.

One possible collection is {a,b,c), {a,d, e}, {a, f, g}, {b.d, f).
{b,e, g}, {c,e, f},{c,d, g). Note that there could be other combina
tions obtained by permuting the letters. Without loss of generality
a can be associated with three pairs b, c; d, e f,g. Now b can be
associated with d, f and e, g. The possible choices left for ¢ arc
only the pairs ¢, f and d, g. This arrangement works.



Appendix A: Problems for
practice

1. If 2x + 4y = | prove that x2 +y2 > (1/20).
2. If x1, x2, ..., x,, are the roots of the equation
anX' + ap 1 X'+ ... +ap =0,
find the roots of the equation

aX —a X" '+ Xt - .+ (-1)a, = 0.

3. Suppose f is a function of two variables which satisfies
fla,b) = f(a+b,b-a)

for all real numbers a and b. If g(x) = f(4*,0) prove that there
exists a constant ¢ such that g(x + ¢) = g(x) for all real x.

4. If a.b, and c are positive real numbers such thata+ b+ ¢ = 1,
prove that ¢ + b2 + ¢ > -;-

5. Suppose 4y, az, ...a,-) are non-negative real numbers and consider
the polynomial

p(x) =¥ +a X! +ad i+ +apx+ 1.

Assume that the equation p(x) = 0 has »n real roots. Prove that
p(2) = 32

113
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APPENDIX A: PROBLEMS FOR PRACTIC'

If x+ (1/x) = =1, find x*° + (1/x%).

If a, b, ¢ are nonzero numbers and are the roots of the equation
X —a +bx-c=0,

find g, b, c.

A person left home between 4 PM. and 5 P.M., returned between
5 PM.and 6 P.M. and found that the hands of his watch had ¢»
actly exchanged places. When did he go out?

Solve
log, x +log,y+log,z = 2,
log;y + loggz+ loggx = 2;
logyz+log, 6x +log, 6y = 2.
Find a finite sequence of 16 numbers such that:

a) it reads the same from left to right as from right to left;
b) the sum of any 7 consecutive terms is —1;
c) the sum of any 11 consecutive terms is +1.

Let n be an odd positive integer and my,ma, m3,..m,, a rea
rangement of the numbers 1,2,3,...,n. Prove that the produ«t
(m; = 1)(ma = 2)...(m,, — n) is an even integer.

Triangle ABC is scalene with angle A having a measure greatc
than 90°. Determine the set of points D lie on the extended line
BC, for which |JAD|* = |BD||CD| where |XY| refers to the distanc«
between the points X and Y.

Find the remainder when 19%° is divided by 92.

Given a triangle ABC, define x, y, z as follows:
x = tan((B-C)/2)-tanA/2
y = tan((C - A)/2)-tan B/2
= tan((A - B)/2)-tan C/2.

4]
|

Prove that: x+ y+ 2+ xyz =
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Solve the following system of equations for real x, y, z,:

x+y-z = 4
2-yY+22 = -4
xyz = 6.

Find the number of ways in which one can place the numbers
1,2,3...., n on the n? squares of an n x n chess board, one on each
, such that the numbers in each row and column are in arithmetic
progression.

If a, b, c, d are four non negative real numbers with a+b+c+d =1,
then show that ab + bc + cd < 3.

N is a 50 digit number (in the decimal notation). All the digits
except the 26th digit (from the left) are 1. If N is divisible by 13,
find the 26th digit.

If a, b, c and d are four positive numbers show that

+-+=+-24

SR
oo
ale
QI8

Take any point P; on the side BC of a triangle ABC and draw the
following chain of lines: P; P, parallel to AC (P> on AB); P»P;
parallel to BC; P3P, parallel to AB; P4Ps parallel to CA; and
Ps P parallel to BC. Show that Pg P, is parallel to AB.

Find all integers a such that the quadratic expression (x + a)(x +
1991) + 1 can be factored as a product (x + b)(x + ¢) where b and
c are integers. |

Determine the set of integers n for which n? + 19n+ 92 is a square.

In a quadrilateral ABCD, AB is parallel to CD, AB # CD, AB = a,
BC = b = AD, CD = c and AC = d. Show that & = ¥ + ac.
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24. If a, b, ¢, d are four positive real numbers, then show that

12 1 1 1 1

< + + +
a+b+c+d a+b a+c a+d b+c
1 1
"pid c+d
S[I 1 1 1

—+—-+—-+-].
+b+c d

+

IA

4

a

25. Given on acute-angled triangle ABC, let points A’, B’,C’ be lo-
cated as follows: A’ is the point where altitude from A on BC
meets the outwards facing semicircle drawn on BC as diameter.
Points B’, C’ are located similarly. Prove that

[BCA’)? + [CAB’)* + [ABC')? = [ABCY?,
where [ABC] denotes the area of triangle ABC.

26. A square sheet of paper ABCD is so folded that B falls on the
mid-point M of CD. Prove that the crease will divide BC in the
ratio 5:3.

27. Suppose P is any point inside a triangle ABC and s is the semi-
perimeter of the triangle ABC, that is, AB + BC + CA = 2s. Prove
that s < AP + BP + CP < 2s.

28. If the circumcentre and centroid of a triangle coincide, prove that
the triangle must be equilateral. In general, show that if any two
of the circumcentre, the incentre, the orthocentre and the centroid
of a triangle coincide, then the triangle must be equilateral.

29. The cyclic octagon ABCDEGFH has sides a,a,a,a,b,b,b,b re-
spectively. Find the radius of the circle that circumscribes the
octagon in terms of « and b.

30. Show that among all quadrilaterals of a given perimeter the squarc
has the largest area.
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A river flows between two houses A and B, the houses standing
some distances away from the banks. Where should a bridge be
built across the river so that a person going from A and B, using
the bridge to cross the river may do so by the shortest path? As-
sume that the banks of the river are straight and parallel and the
bridge i1s perpendicular to the banks.

Suppose P is an interior point of a triangle ABC and AP, BP, CP

meet the opposite sides BC, CA,AB in D, E, F respectively. Find

the set of all possible values the following quantities can take:
AP BP CP AP-BP-CP

o PETPE ™ PDPE PF

Let ABC be an acute-angled triangle and CD, the altitude through
C. If AB = 8and CD = 6, find the distance between the midpoints
of AD and BC.

Prove that the ten’s digit of any power of 3 is even. [example: the
ten’s digit of 3° = 729 is 2].

Suppose A}A;...Aa is a 20-sided regular polygon. How many
non-isosceles (scalene) triangles can be formed whose vertices
are among the vertices of the polygon but whose sides are not the
sides of the polygon?

Let ABCD be a rectangle with AB = a and BC = b. Suppose r)
is the radius of the circle passing through A and B and touching
CD; and similarly r; in the radius of the circle passing through B
and C and touching AD. Show that ry + r» > (4/8)a + b).

Show that 19%* — 13% is a positive integer divisible by 162.

If a,b,c,d are four positive real numbers such that abcd = 1,
prove that (1 + a)(1 + b)(1 + ¢)(1 + d) > 16.

In a group of ten persons, each person is asked to wrte the sum
of the ages of all the other nine persons. If all the ten sums form
the nine-element set {82, 83. 84, 85, 87, 89, 90, 91, 92}, find
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42.

43.

45.

46.

47.

APPENDIX A: PROBLEMS FOR PRACTICE

the individual ages of the persons, assuming them to be whole
numbers (of years).

I have six friends and during a certain vacation I met them during
several dinners. I found that I dined with all the six exactly on one
day; with every five of them on 2 days; with every four of them
on 3 days; with every three of them on 4 days; with every two of
them on 5 days. Further every friend was present at seven dinners
and every friend was absent at 7 dinners. How many dinners did
I have alone?

From a rectangular piece of paper a triangular comer is cut off
resulting in a pentagon. If the sides of the pentagon have lengths
10, 17, 18, 24 and 39 in some order find the sides of the rectangle
and the sides of the triangle cut off.

Find all positive integer solutions x and n of the equation

2 + 615 = 27,

Let X be a finite set containing n elements. Find the number of
all ordered pairs (A, B) of subsets of X such that neither A is con-
tained in B nor B is contained in A.

A trapezoid has perpendicular diagonals and altitude 10. Find the
area of the trapezoid if one diagonal has length 13.

Find the greatest common divisor of all even 6-digit numbers ob-
tained by using each of the digits 1, 2, 3, 4, 5, 6 exactly once.

If xy, x2, x3, .. ., X, are n distinct positive integers, show that there
does not exist a positive integer y satisfying

X1 X2 X3 , ... Xn _
X'+ xg A x = Y

Let M = p°q® where p, q are prime numbers and a, b are positive
integers. Find the number of pairs (m, n) of positive integers, 1 <
m < n < M, such that m divides n and n divides M.
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Show that for any triangle ABC, the following inequality is true:
a® + b + 2 > V3 max{la? - b, |b% - 2, I - &),
where a, b, c are, as usual, the sides of the triangle.

In a quadrilateral ABCD, it is given that AB is parallel to CD and
the diagonals AC and BD are perpendicular to each other. Show
that

(@) AD-BC2AB-CD; (b) AD+ BC 2 AB +CD.

Let x,y and z be three distinct real positive numbers. Determine
with proof whether or not the three real numbers

P4 I DA

y x ’ Z y 9
can be the lengths of the sides of a triangle.

Z X

X Z

Let n be a positive integer and py, p2, p3,- - -, ps be n prime num-
bers all larger than 5 such that 6 divides p? + p3 + p3 +--- + pl.
Prove that 6 divides n.

Prove for every natural number n the following inequality:

] 1.1 ... | (1.1 . .., 1
7:7'1‘(1"3““5+ +2n—l)>n(2+4+ +2n)‘

Let ABC be a triangle with AB = AC and /BAC = 30°. Let A’
be the reflection of A in the line BC; B’ be the reflection of B in
the line CA; C’ be the reflection of C in the line AB. Show that
A’,B’,C’ form the vertices of an equilateral triangle.

Prove that the inradius of a right-angled triangle with integer sides
is an integer.

Show that there are infinitely many pairs (a, b) of relatively prime
integers (not necessarily positive) such that both the quadratic
equations

P +ax+b=0 and 2 +2ax+b=0

have integer roots.
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Let ABC be a triangle and a circle I' * be drawn lying inside the
triangle, touching its incircle I' externally and also touching the
two sides AB and AC. Show that the ratio of the radii of the
circles '’ and T is equal to tan*(238).

Let C, and C; be two concentric circles in the plane with radii
R and 3R respectively. Show that the orthocentre of any triangle
inscribed in circle C) lies in the interior of circle C>. Conversely,
show also that every point in the interior of (5 is the orthocentre
of some triangle inscribed in C).

If a, b, c are three distinct real numbers and

1 1
=b+-=c+-=1
c a

a+

S| -

for some real number ¢ prove that abc +t = 0.

Let a and b be two positive rational numbers such that va + Vb
. . 3

is also a rational number. Prove that ¥a and Vb themselves are
rational numbers.

Suppose a, b and c¢ are three real numbers such that the quadratic
equation

xz—(a+b+c)x+(ab+bc+ca)=0

has roots of the form a@ + i f where @ > 0 and B # 0 are real
numbers [here i = V-1]. Show that

(1) the numbers a, b, ¢ are all positive;

(i) the numbers va, Vb, y/c form the sides of a triangle.

Let ABC be an acute-angled tnangle in which D, E, F are points
on BC, CA, AB respectively such that AD is perpendicular to BC:
AE = EC; and CF bisects £C internally. Suppose CF meets AD
and DE in M and N respectively. If FM =2, MN = | NC =3}
find the perimeter of the triangle ABC.
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Let I" and I be two concentric circles. Let ABC and A’B’C’ be
any two equilateral triangles inscribed in I" and I’ respectively. If
P and P’ are any two points on I' and I’ respectively, show that

PA2+PB*+PC*=A'PP+B'P +C' P

Given any four positive, distinct, real numbers, show that one can
choose three numbers, say,A, B, C from among them such that all
the three quadratic equations

B2 +x+C=0, CPr+x+A=0, A +x+B=0

have only real roots or all the three equations have only imaginary
roots.

The incircle of triangle ABC touches the sides BC, CA and AB in
K, L and M respectively. The line through A and parallel to LK
meets MK in P and the line through A and parallel to MK meets
LK in Q. Show that the line PQ bisects the sides AB and AC of
triangle ABC.

If a, b, ¢, x are real numbers such that abc # 0 and

xb + (1 - x)c B xc + (1 = x)a : xa+ (1 -x)b
a - b B C

then prove thata=b =cora+h+c¢ =0..
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Hints and solutions

W

O o0 93

10
11

12
13
15
16
18
2

—

22
24
32
33
35

Use the given equation repeatedly.
Use Cauchy-Schwarz inequality.

Use the AM-GM inequality for the relations between the coeffi-
cients and the zeroes of a polynomial.

If a, = x+ (1/x), then a,+) = a, - a) — a,-) forn > 1; [Ans:2.]
(-1, -1, -=1) is the only solution.

4 Hrs, 2612 Mins.

(x,y,2) =(2/3,27/8,32/3).

Look for equal numbers in the sequence.

When n is odd there are more odd than even numbers in the se-
quence 1,2,3,....,n.

There is only one such point.
49,
(x,y.2) =(2,3,1,),(-1,3,-2).

There are 8 (obvious) ways.

3.

a = 1989, 1993.

n=-8,-11I.

Use the AM-GM inequality.

Consider ratios of areas; [6, o) and 8, co).

Drop perpendicular from the midpoint of BC onto AB; ans. 5.
640.
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36 Express ri, r; in terms of a and b.
37 19=18+1,13 =12+ 1.

39 5,6,7,7,8, 10, 12, 13, 14, 15.
40 One.

41 The sides of the triangle form a Pythagorean triple. Ans. Rectan-
gle: 39 x 18; Tnangle: 17,8,15.

42 Show that n is even and factorize. Ans.: (n, x) = (12, 59).

43 For every subset A of X, a subset Bof X suchthat A ¢ BorB¢ A
can be obtained by taking the union of a proper subset of A with
a nonempty subset of X \ A. Ans.: 4" -2.3" +2".

44 845/ V69.
45 6.

46 Each x; <y. If x = max{x; : 1 < j < n}, then x > n and hence
y > n.

47 (a+ 1)a+2)b+ 1)b+2)/4
-48 Assume a > b > c and proceed.

49 Let O be the intersection of two diagonals. Express sides in terms
of OA, OB, OC, OD.

50 Assume x >y > z > 0 and check the triangle inequality.

51 Any prime > 3 is either of the form 6k — 1 or of the form 6k + 1.
52 Use induction on n.

53 If AB = AC = u, prove that (B'C’)? = (C’'A")? = (A’B’)* = 2u?.

54 r=(s-a)tan LA/2.
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55

56

57
58
59
60

61

62

63

64

65

APPENDIX A: PROBLEMS FOR PRACTICI:

The given quadratics have integer roots if and only if a® - 4b and
4a* - 4b are both squares. One class of solutions is a = 2k + .
b= —(k — 1)k(k + 1)(k + 2), where 3 does not divide a.

The line joining the centres of I' and I'" passes through A and
bisects ZA.

Where does the orthocentre lie?
Show that r = +1 and determine the value of abc in each case.
a+b=(@a"?+ b'/3)(a2/3 +a'3p'3 + p2/3),

What is the discriminant of the given quadratic equation? Look
for a factorization of this discriminant.

Show that D is the mid-point of BC and ABC is equilateral. Ans.:
12V3.

Use Appolonius’ theorem in triangle PB’C’ and Stewart’s theo-
rem in PA’M.

Assume 0 < x; < x3 < x3 < x4 are distinct real numbers. Then
XjX2 < X1 X3 < X2X3 < X2X4 < X3X4.

MAEK is an isosceles trapezoid.

lfa_c_ e — A then A = a+c+e
b d f T b+d+ f
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